Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2019 Marks available 8 Reference code 19N.1.SL.TZ0.S_6
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_6 Adapted from N/A

Question

Let f(x)=4cos(x2)+1, for 0x6π. Find the values of x for which f(x)>22+1.

Markscheme

METHOD 1 – FINDING INTERVALS FOR x

4cos(x2)+1>22+1

correct working          (A1)

eg    4cos(x2)=22,  cos(x2)>22

recognizing  cos122=π4          (A1)

one additional correct value for x2 (ignoring domain and equation/inequalities)          (A1)

eg    π47π43159π44515π4

three correct values for x        A1A1

eg    π27π29π2

valid approach to find intervals          (M1)

eg    

correct intervals (must be in radians)        A1A1     N2

0x<π27π2<x<9π2 

Note: If working shown, award A1A0 if inclusion/exclusion of endpoints is incorrect. If no working shown award N1.
If working shown, award A1A0 if both correct intervals are given, and additional intervals are given. If no working shown award N1.
Award A0A0 if inclusion/exclusion of endpoints are incorrect and additional intervals are given.

 

METHOD 2 – FINDING INTERVALS FOR x2

4cos(x2)+1>22+1

correct working          (A1)

eg    4cos(x2)=22,  cos(x2)>22

recognizing  cos122=π4          (A1)

one additional correct value for x2 (ignoring domain and equation/inequalities)          (A1)

eg    π47π43159π44515π4

three correct values for x2        A1

eg    π47π49π4

valid approach to find intervals          (M1)

eg   

one correct interval for x2        A1

eg    0x2<π47π4<x2<9π4

correct intervals (must be in radians)        A1A1     N2

0x<π27π2<x<9π2 

Note: If working shown, award A1A0 if inclusion/exclusion of endpoints is incorrect. If no working shown award N1.
If working shown, award A1A0 if both correct intervals are given, and additional intervals are given. If no working shown award N1.
Award A0A0 if inclusion/exclusion of endpoints are incorrect and additional intervals are given.

 

[8 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.8—Solving trig equations
Show 34 related questions
Topic 3— Geometry and trigonometry

View options