User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.1.SL.TZ0.S_7
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_7 Adapted from N/A

Question

Let XX and YY be normally distributed with XN(14a2)XN(14a2) and YN(22a2)YN(22a2)a>0a>0.

Find bb so that P(X>b)=P(Y<b)P(X>b)=P(Y<b).

[2]
a.

It is given that P(X>20)=0.112P(X>20)=0.112.

Find P(16<Y<28)P(16<Y<28).

[4]
b.

Markscheme

METHOD 1

recognizing that bb is midway between the means of 1414 and 2222.          (M1)

eg   b=14+222b=14+222

b=18b=18        A1   N2

 

METHOD 2

valid attempt to compare distributions          (M1)

eg    b14a=b22ab14=22bb14a=b22ab14=22b

b=18b=18        A1   N2

 

[2 marks]

a.

valid attempt to compare distributions (seen anywhere)       (M1)

eg   YY is a horizontal translation of XX of 88 units to the right,

P(16<Y<28)=P(8<X<20), P(Y>22+6)=P(X>14+6)P(16<Y<28)=P(8<X<20), P(Y>22+6)=P(X>14+6)

valid approach using symmetry       (M1)

eg   12P(X>20)12P(Y<16)2×P(14<x<20), P(X<8)=P(X>20)12P(X>20)12P(Y<16)2×P(14<x<20), P(X<8)=P(X>20)

correct working          (A1)

eg   12(0.112)2×(0.50.112)2×0.3880.8880.11212(0.112)2×(0.50.112)2×0.3880.8880.112

P(16<Y<28)=0.776P(16<Y<28)=0.776        A1   N3

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4—Statistics and probability » SL 4.9—Normal distribution and calculations
Show 130 related questions
Topic 4—Statistics and probability

View options