Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

User interface language: English | Español

Date May Example questions Marks available 6 Reference code EXM.1.AHL.TZ0.2
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Express Question number 2 Adapted from N/A

Question

Consider the integral t11x+x2 dx for t>1.

Very briefly, explain why the value of this integral must be negative.

[1]
a.

Express the function f(x)=1x+x2 in partial fractions.

[6]
b.

Use parts (a) and (b) to show that ln(1+t)lnt<ln2.

[4]
c.

Markscheme

The numerator is negative but the denominator is positive. Thus the integrand is negative and so the value of the integral will be negative.     R1AG

[1 mark]

a.

1x+x2=1(1+x)xA1+x+Bx     M1M1A1

1Ax+B(1+x)A=1,B=1     M1A1

1x+x211+x+1x     A1

[6 marks]

b.

t111+x+1xdx=[ln(1+x)lnx]t1=ln(1+t)lntln2    M1A1A1

Hence ln(1+t)lntln2<0ln(1+t)lnt<ln2     R1AG

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » AHL 1.11—Partial fractions
Show 42 related questions
Topic 1—Number and algebra

View options