Date | November 2019 | Marks available | 1 | Reference code | 19N.2.sl.TZ0.4 |
Level | SL | Paper | 2 | Time zone | TZ0 |
Command term | State and Outline | Question number | 4 | Adapted from | N/A |
Question
A molecule of citric acid, C6H8O7, is shown.
The equation for the first dissociation of citric acid in water is
C6H8O7 (aq) + H2O (l) C6H7O7− (aq) + H3O+ (aq)
Identify a conjugate acid–base pair in the equation.
The value of the equilibrium constant for the first dissociation at 298 K is 5.01 × 10−4.
State, giving a reason, the strength of citric acid.
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
Outline one laboratory methods of distinguishing between solutions of citric acid and hydrochloric acid of equal concentration, stating the expected observations.
Markscheme
C6H8O7 AND C6H7O7−
OR
H2O AND H3O+ ✔
weak acid AND partially dissociated
OR
weak acid AND equilibrium lies to left
OR
weak acid AND Kc/Ka<1 ✔
Any one of:
«electrical» conductivity AND HCl greater ✔
pH AND citric acid higher ✔
titrate with strong base AND pH at equivalence higher for citric acid ✔
add reactive metal/carbonate/hydrogen carbonate AND stronger effervescence/faster reaction with HCl ✔
titration AND volume of alkali for complete neutralisation greater for citric acid ✔
titrate with strong base AND more than one equivalence point for complete neutralisation of citric acid ✔
titrate with strong base AND buffer zone with citric acid ✔
NOTE: Accept “add universal indicator AND HCl more red/pink” for M2.
Accept any acid reaction AND HCl greater rise in temperature.
Accept specific examples throughout.
Do not accept “smell” or “taste”.