DP Mathematics HL Questionbank
Tests for convergence: comparison test; limit comparison test; ratio test; integral test.
Path: |
Description
[N/A]Directly related questions
- 18M.3ca.hl.TZ0.1b: Find the interval of convergence...
- 18M.3ca.hl.TZ0.1a: Given that \(n > {\text{ln}}\,n\) for \(n > 0\), use the comparison test to show that the...
- 16M.3ca.hl.TZ0.5c: Show that \(S < 1.65\).
- 16M.3ca.hl.TZ0.5b: (i) Use the substitution \(T = t - \pi \) in the expression for \({u_{n + 1}}\) to show that...
- 16M.3ca.hl.TZ0.5a: Explain why the series is alternating.
- 16N.3ca.hl.TZ0.3c: Using a suitable test, determine whether this series converges or diverges.
- 16N.3ca.hl.TZ0.3b: (i) Find \({a_1}\) and \({a_2}\) and hence write down an expression for \({a_n}\). (ii) Show...
- 12M.3ca.hl.TZ0.4d: Prove that the series \(\sum\limits_{n = 1}^\infty {({u_n} - L)} \) diverges.
- 12M.3ca.hl.TZ0.5b: Show that the series \(\sum\limits_{r = 2}^\infty {\frac{{{{( - 1)}^r}}}{{r\ln r}}} \) is...
- 12N.3ca.hl.TZ0.3b: Use the integral test to prove that \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges.
- 12N.3ca.hl.TZ0.4a: Use the limit comparison test to prove that...
- 08N.3ca.hl.TZ0.2a: (i) Show that \(\int_1^\infty {\frac{1}{{x(x + p)}}{\text{d}}x,{\text{ }}p \ne 0} \) is...
- 11M.3ca.hl.TZ0.5b: (i) Show, by comparison with an appropriate geometric series,...
- 13N.3ca.hl.TZ0.1a: Consider the infinite series \(\sum\limits_{n = 1}^\infty {\frac{2}{{{n^2} + 3n}}} \). Use a...
- 15N.3ca.hl.TZ0.3b: Hence use the comparison test to prove that the series...
- 15M.3ca.hl.TZ0.3a: Show that the series \(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}\ln n}}} \) converges.
- 15M.3ca.hl.TZ0.3c: (i) State why the integral test can be used to determine the convergence or divergence of...