Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

Given that n>lnn for n>0, use the comparison test to show that the series n=01ln(n+2) is divergent.

[3]
a.

Find the interval of convergence for n=0(3x)nln(n+2).

[7]
b.

Markscheme

METHOD 1

ln(n+2)<n+2     (A1)

1ln(n+2)>1n+2 (for n)     A1

Note: Award A0 for statements such as \sum\limits_{n = 0}^\infty  {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}}  > \sum\limits_{n = 0}^\infty  {\frac{1}{{n + 2}}} . However condone such a statement if the above A1 has already been awarded.

\sum\limits_{n = 0}^\infty  {\frac{1}{{n + 2}}}  (is a harmonic series which) diverges     R1

Note: The R1 is independent of the A1s.

Award R0 for statements such as "\frac{1}{{n + 2}} diverges".

so \sum\limits_{n = 0}^\infty  {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} diverges by the comparison test     AG

 

METHOD 2

\frac{1}{{{\text{ln}}\,n}} > \frac{1}{n} (for n \geqslant 2)     A1

Note: Award A0 for statements such as \sum\limits_{n = 2}^\infty  {\frac{1}{{{\text{ln}}\,n}}}  > \sum\limits_{n = 2}^\infty  {\frac{1}{n}} . However condone such a statement if the above A1 has already been awarded.

a correct statement linking n and n + 2 eg,

\sum\limits_{n = 0}^\infty  {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}}  = \sum\limits_{n = 2}^\infty  {\frac{1}{{{\text{ln}}\,n}}} or \sum\limits_{n = 0}^\infty  {\frac{1}{{n + 2}}}  = \sum\limits_{n = 2}^\infty  {\frac{1}{n}}      A1

Note: Award A0 for \sum\limits_{n = 0}^\infty  {\frac{1}{n}}

\sum\limits_{n = 2}^\infty  {\frac{1}{n}}  (is a harmonic series which) diverges

(which implies that \sum\limits_{n = 2}^\infty  {\frac{1}{{{\text{ln}}\,n}}} diverges by the comparison test)      R1

Note: The R1 is independent of the A1s.

Award R0 for statements such as \sum\limits_{n = 0}^\infty  {\frac{1}{n}} deiverges and "{\frac{1}{n}} diverges".

Award A1A0R1 for arguments based on \sum\limits_{n = 1}^\infty  {\frac{1}{n}} .

so \sum\limits_{n = 0}^\infty  {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}}  diverges by the comparison test      AG

[3 marks]

a.

applying the ratio test \mathop {{\text{lim}}}\limits_{n \to \infty } \left| {\frac{{{{\left( {3x} \right)}^{n + 1}}}}{{{\text{ln}}\left( {n + 3} \right)}} \times \frac{{{\text{ln}}\left( {n + 2} \right)}}{{{{\left( {3x} \right)}^n}}}} \right|     M1

= \left| {3x} \right| (as \mathop {{\text{lim}}}\limits_{n \to \infty } \left| {\frac{{{\text{ln}}\left( {n + 2} \right)}}{{{\text{ln}}\left( {n + 3} \right)}}} \right| = 1     A1

Note: Condone the absence of limits and modulus signs.

Note: Award M1A0 for 3{x^n}. Subsequent marks can be awarded.

series converges for  - \frac{1}{3} < x < \frac{1}{3}

considering x =  - \frac{1}{3} and x = \frac{1}{3}     M1

Note: Award M1 to candidates who consider one endpoint.

when x = \frac{1}{3}, series is \sum\limits_{n = 0}^\infty  {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} which is divergent (from (a))      A1

Note: Award this A1 if \sum\limits_{n = 0}^\infty  {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}}  is not stated but reference to part (a) is.

when x =  - \frac{1}{3}, series is \sum\limits_{n = 0}^\infty  {\frac{{{{\left( { - 1} \right)}^n}}}{{{\text{ln}}\left( {n + 2} \right)}}}      A1

\sum\limits_{n = 0}^\infty  {\frac{{{{\left( { - 1} \right)}^n}}}{{{\text{ln}}\left( {n + 2} \right)}}}  converges (conditionally) by the alternating series test      R1

(strictly alternating, \left| {{u_n}} \right| > \left| {{u_{n + 1}}} \right| for n \geqslant 0 and \mathop {{\text{lim}}}\limits_{n \to \infty } \left( {{u_n}} \right) = 0)

so the interval of convergence of S is  - \frac{1}{3} \leqslant x < \frac{1}{3}     A1

Note: The final A1 is dependent on previous A1s – ie, considering correct series when x =  - \frac{1}{3} and x = \frac{1}{3} and on the final R1.

Award as above to candidates who firstly consider x =  - \frac{1}{3} and then state conditional convergence implies divergence at x = \frac{1}{3}.

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.2 » Convergence of infinite series.
Show 27 related questions

View options