DP Mathematics HL Questionbank
8.12
Description
[N/A]Directly related questions
- 18M.3srg.hl.TZ0.4c: Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\)...
- 16M.3srg.hl.TZ0.3: The group \(\{ G,{\text{ }} * \} \) is Abelian and the bijection \(f:{\text{ }}G \to G\) is...
- 17N.3srg.hl.TZ0.5b: Prove that \({\text{Ker}}(f)\) is a subgroup of \(\{ G,{\text{ }} * \} \).
- 17N.3srg.hl.TZ0.5a: Prove that \(f({e_G}) = {e_H}\).
- 17M.3srg.hl.TZ0.4d: Show that the groups \(\{ \mathbb{Z},{\text{ }} * \} \) and...
- 15N.3srg.hl.TZ0.5c: Prove that \(\{ {\text{Ker}}(f),{\text{ }} + \} \) is a subgroup of...
- 15N.3srg.hl.TZ0.5b: Find the kernel of \(f\).
- 15N.3srg.hl.TZ0.5a: Prove that the function \(f\) is a homomorphism from the group...
- 12N.3srg.hl.TZ0.3d: Is \(\{ P(A){\text{, }}\Delta \} \) isomorphic to \(\{ {\mathbb{Z}_4},{\text{ }}{ + _4}\} \) ?...
- 08M.3srg.hl.TZ1.3: (a) Find the six roots of the equation \({z^6} - 1 = 0\) , giving your answers in the form...
- 11M.3srg.hl.TZ0.5b: Consider the group G , of order 4, which has distinct elements a , b and c and the identity...
- SPNone.3srg.hl.TZ0.3b: The group \(\{ K,{\text{ }} \circ \} \) is defined on the six permutations of the integers 1, 2,...
- SPNone.3srg.hl.TZ0.4: The groups \(\{ K,{\text{ }} * \} \) and \(\{ H,{\text{ }} \odot \} \) are defined by the...
- 10M.3srg.hl.TZ0.3: (a) Consider the set A = {1, 3, 5, 7} under the binary operation \( * \), where \( * \)...
- 10N.3srg.hl.TZ0.4: Set...
- 11N.3srg.hl.TZ0.1c: Show that \(\{ G,{\text{ }}{ \times _{16}}\} \) and \(\{ H,{\text{ }} * \} \) are not isomorphic.
- 14M.3srg.hl.TZ0.4b: (i) Prove that the kernel of \(f,{\text{ }}K = {\text{Ker}}(f)\), is closed under the group...
- 14M.3srg.hl.TZ0.4a: Prove that \(f({e_G}) = {e_H}\), where \({e_G}\) is the identity element in \(G\) and \({e_H}\)...
- 15M.3srg.hl.TZ0.5c: The mapping \(\phi :G \to G\) is given by \(\phi (g) = g + g\), for \(g \in G\). Prove that...
- 14N.3srg.hl.TZ0.4c: Given that \(f(x * y) = p\), find \(f(y)\).
- 14N.3srg.hl.TZ0.4a: Prove that for all \(a \in G,{\text{ }}f({a^{ - 1}}) = {\left( {f(a)} \right)^{ - 1}}\).
- 14N.3srg.hl.TZ0.4b: Let \(\{ H,{\text{ }} \circ \} \) be the cyclic group of order seven, and let \(p\) be a...
Sub sections and their related questions
Definition of a group homomorphism.
- SPNone.3srg.hl.TZ0.4: The groups \(\{ K,{\text{ }} * \} \) and \(\{ H,{\text{ }} \odot \} \) are defined by the...
- 14M.3srg.hl.TZ0.4b: (i) Prove that the kernel of \(f,{\text{ }}K = {\text{Ker}}(f)\), is closed under the group...
- 14M.3srg.hl.TZ0.4a: Prove that \(f({e_G}) = {e_H}\), where \({e_G}\) is the identity element in \(G\) and \({e_H}\)...
- 14N.3srg.hl.TZ0.4a: Prove that for all \(a \in G,{\text{ }}f({a^{ - 1}}) = {\left( {f(a)} \right)^{ - 1}}\).
- 14N.3srg.hl.TZ0.4b: Let \(\{ H,{\text{ }} \circ \} \) be the cyclic group of order seven, and let \(p\) be a...
- 14N.3srg.hl.TZ0.4c: Given that \(f(x * y) = p\), find \(f(y)\).
- 15N.3srg.hl.TZ0.5a: Prove that the function \(f\) is a homomorphism from the group...
- 16M.3srg.hl.TZ0.3: The group \(\{ G,{\text{ }} * \} \) is Abelian and the bijection \(f:{\text{ }}G \to G\) is...
- 18M.3srg.hl.TZ0.4c: Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\)...
Definition of the kernel of a homomorphism.
- 14M.3srg.hl.TZ0.4b: (i) Prove that the kernel of \(f,{\text{ }}K = {\text{Ker}}(f)\), is closed under the group...
- 14M.3srg.hl.TZ0.4a: Prove that \(f({e_G}) = {e_H}\), where \({e_G}\) is the identity element in \(G\) and \({e_H}\)...
- 15N.3srg.hl.TZ0.5b: Find the kernel of \(f\).
- 16M.3srg.hl.TZ0.3: The group \(\{ G,{\text{ }} * \} \) is Abelian and the bijection \(f:{\text{ }}G \to G\) is...
- 18M.3srg.hl.TZ0.4c: Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\)...
Proof that the kernel and range of a homomorphism are subgroups.
- 15N.3srg.hl.TZ0.5c: Prove that \(\{ {\text{Ker}}(f),{\text{ }} + \} \) is a subgroup of...
- 16M.3srg.hl.TZ0.3: The group \(\{ G,{\text{ }} * \} \) is Abelian and the bijection \(f:{\text{ }}G \to G\) is...
- 18M.3srg.hl.TZ0.4c: Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\)...
Proof of homomorphism properties for identities and inverses.
- 16M.3srg.hl.TZ0.3: The group \(\{ G,{\text{ }} * \} \) is Abelian and the bijection \(f:{\text{ }}G \to G\) is...
- 18M.3srg.hl.TZ0.4c: Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\)...
Isomorphism of groups.
- 12N.3srg.hl.TZ0.3d: Is \(\{ P(A){\text{, }}\Delta \} \) isomorphic to \(\{ {\mathbb{Z}_4},{\text{ }}{ + _4}\} \) ?...
- 08M.3srg.hl.TZ1.3: (a) Find the six roots of the equation \({z^6} - 1 = 0\) , giving your answers in the form...
- 11M.3srg.hl.TZ0.5b: Consider the group G , of order 4, which has distinct elements a , b and c and the identity...
- SPNone.3srg.hl.TZ0.3b: The group \(\{ K,{\text{ }} \circ \} \) is defined on the six permutations of the integers 1, 2,...
- 10M.3srg.hl.TZ0.3: (a) Consider the set A = {1, 3, 5, 7} under the binary operation \( * \), where \( * \)...
- 10N.3srg.hl.TZ0.4: Set...
- 11N.3srg.hl.TZ0.1c: Show that \(\{ G,{\text{ }}{ \times _{16}}\} \) and \(\{ H,{\text{ }} * \} \) are not isomorphic.
- 15M.3srg.hl.TZ0.5c: The mapping \(\phi :G \to G\) is given by \(\phi (g) = g + g\), for \(g \in G\). Prove that...
- 16M.3srg.hl.TZ0.3: The group \(\{ G,{\text{ }} * \} \) is Abelian and the bijection \(f:{\text{ }}G \to G\) is...
- 18M.3srg.hl.TZ0.4c: Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\)...