User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Show that Question number 4 Adapted from N/A

Question

The binary operation \( * \) is defined by

\(a * b = a + b - 3\) for \(a,{\text{ }}b \in \mathbb{Z}\).

The binary operation \( \circ \) is defined by

\(a \circ b = a + b + 3\) for \(a,{\text{ }}b \in \mathbb{Z}\).

Consider the group \(\{ \mathbb{Z},{\text{ }} \circ {\text{\} }}\) and the bijection \(f:\mathbb{Z} \to \mathbb{Z}\) given by \(f(a) = a - 6\).

Show that \(\{ \mathbb{Z},{\text{ }} * \} \) is an Abelian group.

[9]
a.

Show that there is no element of order 2.

[2]
b.

Find a proper subgroup of \(\{ \mathbb{Z},{\text{ }} * \} \).

[2]
c.

Show that the groups \(\{ \mathbb{Z},{\text{ }} * \} \) and \(\{ \mathbb{Z},{\text{ }} \circ \} \) are isomorphic.

[3]
d.

Markscheme

closure: \(\{ \mathbb{Z},{\text{ }} * \} \) is closed because \(a + b - 3 \in \mathbb{Z}\)     R1

identity: \(a * e = a + e - 3 = a\)     (M1)

\(e = 3\)     A1

inverse: \(a * {a^{ - 1}} = a + {a^{ - 1}} - 3 = 3\)     (M1)

\({a^{ - 1}} = 6 - a\)     A1

associative: \(a * (b * c) = a * (b + c - 3) = a + b + c - 6\)     A1

\(\left( {a{\text{ }}*{\text{ }}b} \right){\text{ }}*{\text{ }}c{\text{ }} = \left( {a{\text{ }} + {\text{ }}b{\text{ }} - {\text{ }}3} \right)*{\text{ }}c{\text{ }} = {\text{ }}a{\text{ }} + {\text{ }}b{\text{ }} + {\text{ }}c{\text{ }} - {\text{ }}6\)    A1

associative because \(a * (b * c) = (a * b) * c\)     R1

\(b * a = b + a - 3 = a + b - 3 = a * b\) therefore commutative hence Abelian     R1

hence \(\{ \mathbb{Z},{\text{ }} * \} \) is an Abelian group     AG

[9 marks]

a.

if \(a\) is of order 2 then \(a * a = 2a - 3 = 3\) therefore \(a = 3\)     A1

which is a contradiction

since \(e = 3\) and has order 1     R1

 

Note:     R1 for recognising that the identity has order 1.

 

[2 marks]

b.

for example \(S = \{ - 6,{\text{ }} - 3,{\text{ }}0,{\text{ }}3,{\text{ }}6 \ldots \} \) or \(S = \{ \ldots ,{\text{ }} - 1,{\text{ }}1,{\text{ }}3,{\text{ }}5,{\text{ }}7 \ldots \} \)     A1R1

 

Note:     R1 for deducing, justifying or verifying that \(\left\{ {S, * } \right\}\) is indeed a proper subgroup.

 

[2 marks]

c.

we need to show that \(f(a * b) = f(a) \circ f(b)\)     R1

\(f(a * b) = f(a + b - 3) = a + b - 9\)     A1

\(f(a) \circ f(b) = (a - 6) \circ (b - 6) = a + b - 9\)     A1

hence isomorphic     AG

 

Note:     R1 for recognising that \(f\) preserves the operation; award R1A0A0 for an attempt to show that \(f(a \circ b) = f(a) * f(b)\).

 

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.12

View options