Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 9 Reference code SPNone.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Show that and State Question number 4 Adapted from N/A

Question

The groups {K, } and {H, } are defined by the following Cayley tables.

 

G    

 

H    

By considering a suitable function from G to H , show that a surjective homomorphism exists between these two groups. State the kernel of this homomorphism.

Markscheme

consider the function f given by

f(E)=e

f(A)=e

f(B)=a     M1A1

f(C)=a

then, it has to be shown that

f(XY)=f(X)f(Y) for all X , YG     (M1)

consider

f((E or A)(E or A))=f(E or A)=e; f(E or A)f(E or A)=ee=e     M1A1

f((E or A)(B or C))=f(B or C)=a; f(E or A)f(B or C)=ea=a     A1

f((B or C)(B or C))=f(E or A)=e; f(B or C)f(B or C)=aa=e     A1

since the groups are Abelian, there is no need to consider f((B or C)(E or A))     R1

the required property is satisfied in all cases so the homomorphism exists

Note: A comprehensive proof using tables is acceptable.

 

the kernel is {E, A}     A1

[9 marks]

Examiners report

[N/A]

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.12 » Definition of a group homomorphism.

View options