DP Mathematics HL Questionbank
6.4
Path: |
Description
[N/A]Directly related questions
- 18M.2.hl.TZ1.5b: Hence find \(\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x\).
- 18M.2.hl.TZ1.5a: Given that \(2{x^3} - 3x + 1\) can be expressed in the...
- 15M.1.hl.TZ1.3b: Find \(\int {{{\sin }^2}x{\text{d}}x} \).
- 09N.1.hl.TZ0.7b: Find \(\int {{{\tan }^3}x{\text{d}}x} \) .
- 13N.2.hl.TZ0.10: By using the substitution \(x = 2\tan u\), show that...
- 15M.1.hl.TZ1.3a: Find \(\int {(1 + {{\tan }^2}x){\text{d}}x} \).
- 15M.1.hl.TZ1.6c: Hence, write down \(\int {\frac{{3x - 2}}{{2x - 1}}} {\text{d}}x\).
Sub sections and their related questions
Indefinite integration as anti-differentiation.
- 09N.1.hl.TZ0.7b: Find \(\int {{{\tan }^3}x{\text{d}}x} \) .
- 13N.2.hl.TZ0.10: By using the substitution \(x = 2\tan u\), show that...
- 18M.2.hl.TZ1.5a: Given that \(2{x^3} - 3x + 1\) can be expressed in the...
- 18M.2.hl.TZ1.5b: Hence find \(\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x\).
Indefinite integral of \({x^n}\) , \(\sin x\) , \(\cos x\) and \({{\text{e}}^x}\) .
NoneOther indefinite integrals using the results from 6.2.
- 15M.1.hl.TZ1.3a: Find \(\int {(1 + {{\tan }^2}x){\text{d}}x} \).
- 15M.1.hl.TZ1.3b: Find \(\int {{{\sin }^2}x{\text{d}}x} \).
- 15M.1.hl.TZ1.6c: Hence, write down \(\int {\frac{{3x - 2}}{{2x - 1}}} {\text{d}}x\).