DP Mathematics HL Questionbank

6.4
Path: |
Description
[N/A]Directly related questions
- 18M.2.hl.TZ1.5b: Hence find ∫2x3−3x+1x2+1dx∫2x3−3x+1x2+1dx.
- 18M.2.hl.TZ1.5a: Given that 2x3−3x+12x3−3x+1 can be expressed in the...
- 15M.1.hl.TZ1.3b: Find ∫sin2xdx∫sin2xdx.
- 09N.1.hl.TZ0.7b: Find ∫tan3xdx∫tan3xdx .
- 13N.2.hl.TZ0.10: By using the substitution x=2tanux=2tanu, show that...
- 15M.1.hl.TZ1.3a: Find ∫(1+tan2x)dx∫(1+tan2x)dx.
- 15M.1.hl.TZ1.6c: Hence, write down ∫3x−22x−1dx∫3x−22x−1dx.
Sub sections and their related questions
Indefinite integration as anti-differentiation.
- 09N.1.hl.TZ0.7b: Find ∫tan3xdx∫tan3xdx .
- 13N.2.hl.TZ0.10: By using the substitution x=2tanux=2tanu, show that...
- 18M.2.hl.TZ1.5a: Given that 2x3−3x+12x3−3x+1 can be expressed in the...
- 18M.2.hl.TZ1.5b: Hence find ∫2x3−3x+1x2+1dx∫2x3−3x+1x2+1dx.
Indefinite integral of xnxn , sinxsinx , cosxcosx and exex .
NoneOther indefinite integrals using the results from 6.2.
- 15M.1.hl.TZ1.3a: Find ∫(1+tan2x)dx∫(1+tan2x)dx.
- 15M.1.hl.TZ1.3b: Find ∫sin2xdx∫sin2xdx.
- 15M.1.hl.TZ1.6c: Hence, write down ∫3x−22x−1dx∫3x−22x−1dx.