Processing math: 100%

User interface language: English | Español

Date November 2009 Marks available 3 Reference code 09N.1.hl.TZ0.7
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 7 Adapted from N/A

Question

Calculate π3π4sec2x3tanxdx .

[6]
a.

Find tan3xdx .

[3]
b.

Markscheme

EITHER

let u=tanx; du=sec2xdx     (M1)

consideration of change of limits     (M1)

π3π4sec2x3tanxdx=π3π41u13du     (A1)

Note: Do not penalize lack of limits.

 

=[3u232]31     A1

=3×323232=(33332)     A1A1     N0

OR

π3π4sec2x3tanxdx=[3(tanx)232]π3π4     M2A2

=3×323232=(33332)     A1A1     N0

[6 marks]

a.

tan3xdx=tanx(sec2x1)dx     M1

=(tanx×sec2xtanx)dx

=12tan2xln|secx|+C     A1A1

Note: Do not penalize the absence of absolute value or C.

 

[3 marks]

b.

Examiners report

Quite a variety of methods were successfully employed to solve part (a).

a.

Many candidates did not attempt part (b).

b.

Syllabus sections

Topic 6 - Core: Calculus » 6.4 » Indefinite integration as anti-differentiation.

View options