Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.2.hl.TZ1.5
Level HL only Paper 2 Time zone TZ1
Command term Hence and Find Question number 5 Adapted from N/A

Question

Given that 2x33x+1 can be expressed in the form Ax(x2+1)+Bx+C, find the values of the constants AB and C.

[2]
a.

Hence find 2x33x+1x2+1dx.

[5]
b.

Markscheme

2x33x+1=Ax(x2+1)+Bx+C

A=2,C=1,     A1

A+B=3B=5     A1

[2 marks]

a.

2x33x+1x2+1dx=(2x5xx2+1+1x2+1)dx      M1M1

Note: Award M1 for dividing by (x2+1) to get 2x, M1 for separating the 5x and 1.

=x252ln(x2+1)+arctanx(+c)     (M1)A1A1

Note: Award (M1)A1 for integrating 5xx2+1, A1 for the other two terms.

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.4 » Indefinite integration as anti-differentiation.

View options