Date | May 2018 | Marks available | 5 | Reference code | 18M.2.hl.TZ1.5 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Hence and Find | Question number | 5 | Adapted from | N/A |
Question
Given that \(2{x^3} - 3x + 1\) can be expressed in the form \(Ax\left( {{x^2} + 1} \right) + Bx + C\), find the values of the constants \(A\), \(B\) and \(C\).
Hence find \(\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x\).
Markscheme
\(2{x^3} - 3x + 1 = Ax\left( {{x^2} + 1} \right) + Bx + C\)
\(A = 2,\,\,C = 1,\) A1
\(A + B = - 3 \Rightarrow B = - 5\) A1
[2 marks]
\(\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x = \int {\left( {2x - \frac{{5x}}{{{x^2} + 1}} + \frac{1}{{{x^2} + 1}}} \right)} {\text{d}}x\) M1M1
Note: Award M1 for dividing by \(\left( {{x^2} + 1} \right)\) to get \(2x\), M1 for separating the \(5x\) and 1.
\( = {x^2} - \frac{5}{2}{\text{ln}}\left( {{x^2} + 1} \right) + {\text{arctan}}\,x\left( { + c} \right)\) (M1)A1A1
Note: Award (M1)A1 for integrating \({\frac{{5x}}{{{x^2} + 1}}}\), A1 for the other two terms.
[5 marks]