Date | November 2013 | Marks available | 7 | Reference code | 13N.2.hl.TZ0.10 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
By using the substitution \(x = 2\tan u\), show that \(\int {\frac{{{\text{d}}x}}{{{x^2}\sqrt {{x^2} + 4} }} = \frac{{ - \sqrt {{x^2} + 4} }}{{4x}} + C} \).
Markscheme
EITHER
\(\frac{{{\text{d}}x}}{{{\text{d}}u}} = 2\,{\text{se}}{{\text{c}}^2}u\) A1
\(\int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u\sqrt {4 + 4{{\tan }^2}u} }}} \) (M1)
\(\int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u \times 2\,\sec u}}} \) \(( = \int {\frac{{{\text{d}}u}}{{4{{\sin }^2}u\sqrt {{{\tan }^2}u + 1} }}{\text{ or }} = \int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u\sqrt {4{{\sec }^2}u} }})} } \) A1
OR
\(u = \arctan \frac{x}{2}\)
\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{2}{{{x^2} + 4}}\) A1
\(\int {\frac{{\sqrt {4{{\tan }^2}u + 4{\text{d}}u} }}{{2 \times 4{{\tan }^2}u}}} \) (M1)
\(\int {\frac{{2\,\sec u{\text{d}}u}}{{2 \times 4{{\tan }^2}u}}} \) A1
THEN
\( = \frac{1}{4}\int {\frac{{\sec u{\text{d}}u}}{{{{\tan }^2}u}}} \)
\( = \frac{1}{4}\int {{\text{cosec}}\,u\cot u{\text{d}}u{\text{ }}\left( { = \frac{1}{4}\int {\frac{{\cos u}}{{{{\sin }^2}u}}{\text{d}}u} } \right)} \) A1
\( = - \frac{1}{4}{\text{cosec}}\,u( + C){\text{ }}\left( { = - \frac{1}{{4\sin u}}( + C)} \right)\) A1
use of either \(u = \frac{x}{2}\) or an appropriate trigonometric identity M1
either \(\sin u = \frac{x}{{\sqrt {{x^2} + 4} }}\) or \({\text{cosec}}\,u = \frac{{\sqrt {{x^2} + 4} }}{x}\) (or equivalent) A1
\( = \frac{{ - \sqrt {{x^2} + 4} }}{{4x}}( + C)\) AG
[7 marks]
Examiners report
Most candidates found this a challenging question. A large majority of candidates were able to change variable from x to u but were not able to make any further progress.