User interface language: English | Español

Date November 2013 Marks available 7 Reference code 13N.2.hl.TZ0.10
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 10 Adapted from N/A

Question

By using the substitution \(x = 2\tan u\), show that \(\int {\frac{{{\text{d}}x}}{{{x^2}\sqrt {{x^2} + 4} }} = \frac{{ - \sqrt {{x^2} + 4} }}{{4x}} + C} \).

Markscheme

EITHER

\(\frac{{{\text{d}}x}}{{{\text{d}}u}} = 2\,{\text{se}}{{\text{c}}^2}u\)     A1

\(\int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u\sqrt {4 + 4{{\tan }^2}u} }}} \)     (M1)

\(\int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u \times 2\,\sec u}}} \)   \(( = \int {\frac{{{\text{d}}u}}{{4{{\sin }^2}u\sqrt {{{\tan }^2}u + 1} }}{\text{ or }} = \int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u\sqrt {4{{\sec }^2}u} }})} } \)     A1

OR

\(u = \arctan \frac{x}{2}\)

\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{2}{{{x^2} + 4}}\)     A1

\(\int {\frac{{\sqrt {4{{\tan }^2}u + 4{\text{d}}u} }}{{2 \times 4{{\tan }^2}u}}} \)     (M1)

\(\int {\frac{{2\,\sec u{\text{d}}u}}{{2 \times 4{{\tan }^2}u}}} \)     A1

THEN

\( = \frac{1}{4}\int {\frac{{\sec u{\text{d}}u}}{{{{\tan }^2}u}}} \)

\( = \frac{1}{4}\int {{\text{cosec}}\,u\cot u{\text{d}}u{\text{ }}\left( { = \frac{1}{4}\int {\frac{{\cos u}}{{{{\sin }^2}u}}{\text{d}}u} } \right)} \)     A1

\( =  - \frac{1}{4}{\text{cosec}}\,u( + C){\text{ }}\left( { =  - \frac{1}{{4\sin u}}( + C)} \right)\)     A1

use of either \(u = \frac{x}{2}\) or an appropriate trigonometric identity     M1

either \(\sin u = \frac{x}{{\sqrt {{x^2} + 4} }}\) or \({\text{cosec}}\,u = \frac{{\sqrt {{x^2} + 4} }}{x}\) (or equivalent)     A1

\( = \frac{{ - \sqrt {{x^2} + 4} }}{{4x}}( + C)\)     AG

[7 marks]

Examiners report

Most candidates found this a challenging question. A large majority of candidates were able to change variable from x to u but were not able to make any further progress.

Syllabus sections

Topic 6 - Core: Calculus » 6.4 » Indefinite integration as anti-differentiation.

View options