Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2013 Marks available 7 Reference code 13N.2.hl.TZ0.10
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 10 Adapted from N/A

Question

By using the substitution x=2tanu, show that dxx2x2+4=x2+44x+C.

Markscheme

EITHER

dxdu=2sec2u     A1

2sec2udu4tan2u4+4tan2u     (M1)

2sec2udu4tan2u×2secu   (=du4sin2utan2u+1 or =2sec2udu4tan2u4sec2u)     A1

OR

u=arctanx2

dudx=2x2+4     A1

4tan2u+4du2×4tan2u     (M1)

2secudu2×4tan2u     A1

THEN

=14secudutan2u

=14cosecucotudu (=14cosusin2udu)     A1

=14cosecu(+C) (=14sinu(+C))     A1

use of either u=x2 or an appropriate trigonometric identity     M1

either sinu=xx2+4 or cosecu=x2+4x (or equivalent)     A1

=x2+44x(+C)     AG

[7 marks]

Examiners report

Most candidates found this a challenging question. A large majority of candidates were able to change variable from x to u but were not able to make any further progress.

Syllabus sections

Topic 6 - Core: Calculus » 6.4 » Indefinite integration as anti-differentiation.

View options