DP Mathematics HL Questionbank
Pythagorean identities: \({\cos ^2}\theta + {\sin ^2}\theta = 1\) ; \(1 + {\tan ^2}\theta = {\sec ^2}\theta \) ; \(1 + {\cot ^2}\theta = {\csc ^2}\theta \) .
Path: |
Description
[N/A]Directly related questions
- 16M.2.hl.TZ2.11b: Show that \(\tan \alpha = \frac{{2x}}{{{x^2} + 35}}\).
- 16M.2.hl.TZ2.11a: Find the value of \(\alpha \) when \(x = 10\).
- 16M.1.hl.TZ2.3a: Show that \(\cot \alpha = \tan \left( {\frac{\pi }{2} - \alpha } \right)\) for...
- 16N.1.hl.TZ0.13a: Find the value of...
- 12M.1.hl.TZ2.9: Show that \(\frac{{\cos A + \sin A}}{{\cos A - \sin A}} = \sec 2A + \tan 2A\) .
- 12M.1.hl.TZ1.10b: By squaring both sides of the equation in part (a), solve the equation to find the angles in the...
- 15M.2.hl.TZ1.12c: Using (a) (ii) and your answer from (b) show that...
- 14N.2.hl.TZ0.14a: Show that \(\sin (B + C) = \frac{1}{2}\).