Processing math: 100%

User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.hl.TZ0.13
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 13 Adapted from N/A

Question

Find the value of sinπ4+sin3π4+sin5π4+sin7π4+sin9π4.

[2]
a.

Show that 1cos2x2sinxsinx, xkπ where kZ.

[2]
b.

Use the principle of mathematical induction to prove that

sinx+sin3x++sin(2n1)x=1cos2nx2sinx, nZ+, xkπ where kZ.

[9]
c.

Hence or otherwise solve the equation sinx+sin3x=cosx in the interval 0<x<π.

[6]
d.

Markscheme

sinπ4+sin3π4+sin5π4+sin7π4+sin9π4=22+222222+22=22    (M1)A1

 

Note: Award M1 for 5 equal terms with \) + \) or signs.

 

[2 marks]

a.

1cos2x2sinx1(12sin2x)2sinx    M1

2sin2x2sinx    A1

sinx    AG

[2 marks]

b.

let P(n):sinx+sin3x++sin(2n1)x1cos2nx2sinx

if n=1

P(1):1cos2x2sinxsinx which is true (as proved in part (b))     R1

assume P(k) true, sinx+sin3x++sin(2k1)x1cos2kx2sinx     M1

 

Notes: Only award M1 if the words “assume” and “true” appear. Do not award M1 for “let n=konly. Subsequent marks are independent of this M1.

 

consider P(k+1):

P(k+1):sinx+sin3x++sin(2k1)x+sin(2k+1)x1cos2(k+1)x2sinx

LHS=sinx+sin3x++sin(2k1)x+sin(2k+1)x    M1

1cos2kx2sinx+sin(2k+1)x    A1

1cos2kx+2sinxsin(2k+1)x2sinx

1cos2kx+2sinxcosxsin2kx+2sin2xcos2kx2sinx    M1

1((12sin2x)cos2kxsin2xsin2kx)2sinx    M1

1(cos2xcos2kxsin2xsin2kx)2sinx    A1

1cos(2kx+2x)2sinx    A1

1cos2(k+1)x2sinx

so if true for n=k , then also true for n=k+1

as true for n=1 then true for all nZ+     R1

 

Note: Accept answers using transformation formula for product of sines if steps are shown clearly.

 

Note: Award R1 only if candidate is awarded at least 5 marks in the previous steps.

 

[9 marks]

c.

EITHER

sinx+sin3x=cosx1cos4x2sinx=cosx    M1

1cos4x=2sinxcosx, (sinx0)    A1

1(12sin22x)=sin2x    M1

sin2x(2sin2x1)=0    M1

sin2x=0 or sin2x=12     A1

2x=π, 2x=π6 and 2x=5π6

OR

sinx+sin3x=cosx2sin2xcosx=cosx    M1A1

(2sin2x1)cosx=0, (sinx0)    M1A1

sin2x=12 of cosx=0    A1

2x=π6, 2x=5π6 and x=π2

THEN

x=π2, x=π12 and x=5π12     A1

 

Note: Do not award the final A1 if extra solutions are seen.

 

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.2 » Definition of cosθ , sinθ and tanθ in terms of the unit circle.

View options