DP Mathematics HL Questionbank
The complex plane.
Path: |
Description
[N/A]Directly related questions
- 18M.2.hl.TZ2.1c: Find the argument of \(z\), giving your answer to 4 decimal places.
- 18M.2.hl.TZ2.1b: Find the exact value of the modulus of \(z\).
- 18M.2.hl.TZ2.1a: Express \(z\) in the form \(a + {\text{i}}b\), where \(a,\,b \in \mathbb{Q}\).
- 18M.1.hl.TZ1.11a.ii: Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.
- 18M.1.hl.TZ1.11a.i: Express w2 and w3 in modulus-argument form.
- 12M.1.hl.TZ1.3: If \({z_1} = a + a\sqrt 3 i\) and \({z_2} = 1 - i\), where a is a real constant, express...
- 12M.1.hl.TZ2.12B.d: Draw the four roots on the complex plane (the Argand diagram).
- 12M.1.hl.TZ2.12B.e: Express each of the four roots of the equation in the form \(r{{\text{e}}^{{\text{i}}\theta }}\) .
- 12N.1.hl.TZ0.10c: Let \(z = r\,{\text{cis}}\theta \) , where \(r \in {\mathbb{R}^ + }\) and...
- 12N.1.hl.TZ0.10b: (i) Write \({z_2}\) in modulus-argument form. (ii) Hence solve the equation...
- 11M.1.hl.TZ2.4a: Find AB, giving your answer in the form \(a\sqrt {b - \sqrt 3 } \) , where a ,...
- 12N.1.hl.TZ0.10d: Find the smallest positive value of n for which...
- 14M.1.hl.TZ1.13: A geometric sequence \(\left\{ {{u_n}} \right\}\), with complex terms, is defined by...
- 15M.1.hl.TZ2.7b: The roots are represented by the vertices of a triangle in an Argand diagram. Show that the area...