Processing math: 100%

User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.2.hl.TZ2.8
Level HL only Paper 2 Time zone TZ2
Command term Calculate and Give Question number 8 Adapted from N/A

Question

Farmer Bill owns a rectangular field, 10 m by 4 m. Bill attaches a rope to a wooden post at one corner of his field, and attaches the other end to his goat Gruff.

Given that the rope is 5 m long, calculate the percentage of Bill’s field that Gruff is able to graze. Give your answer correct to the nearest integer.

[4]
a.

Bill replaces Gruff’s rope with another, this time of length a, 4<a<10, so that Gruff can now graze exactly one half of Bill’s field.

Show that a satisfies the equation

a2arcsin(4a)+4a216=40.

[4]
b.

Find the value of a.

[2]
c.

Markscheme

EITHER

area of triangle =12×3×4(=6)     A1

area of sector =12arcsin(45)×52(=11.5911)     A1

OR

4025x2dx     M1A1

THEN

total area =17.5911 m2     (A1)

percentage =17.591140×100=44%     A1

[4 marks]

a.

METHOD 1

area of triangle =12×4×a216     A1

θ=arcsin(4a)     (A1)

area of sector =12r2θ=12a2arcsin(4a)     A1

therefore total area =2a216+12a2arcsin(4a)=20     A1

rearrange to give: a2arcsin(4a)+4a216=40     AG

METHOD 2

40a2x2dx=20     M1

use substitution x=asinθ, dxdθ=acosθ

arcsin(4a)0a2cos2θdθ=20

a22arcsin(4a)0(cos2θ+1)dθ=20     M1

a2[(sin2θ2+θ)]arcsin(4a)0=40     A1

a2[(sinθcosθ+θ]arcsin(4a)0=40

a2arcsin(4a)+a2(4a)(1(4a)2)=40     A1

a2arcsin(4a)+4a216=40     AG

[4 marks]

b.

solving using GDCa=5.53 cm     A2

[2 marks]

Total [10 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.1 » Length of an arc; area of a sector.

View options