Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.3ca.hl.TZ0.4
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Show that Question number 4 Adapted from N/A

Question

The function f is defined by f(x) = (arcsin x)2, 1x1.

 

The function f satisfies the equation (1x2)f(x)xf(x)2=0.

Show that f(0)=0.

[2]
a.

By differentiating the above equation twice, show that

(1x2)f(4)(x)5xf(3)(x)4f(x)=0

where f(3)(x) and f(4)(x) denote the 3rd and 4th derivative of f(x) respectively.

[4]
b.

Hence show that the Maclaurin series for f(x) up to and including the term in x4 is x2+13x4.

[3]
c.

Use this series approximation for f(x) with x=12 to find an approximate value for π2.

[2]
d.

Markscheme

f(x)=2arcsin(x)1x2     M1A1

Note: Award M1 for an attempt at chain rule differentiation.
Award M0A0 for f(x)=2arcsin(x).

f(0)=0     AG

[2 marks]

a.

differentiating gives (1x2)f(3)(x)2xf(x)f(x)xf(x)(=0)      M1A1

differentiating again gives (1x2)f(4)(x)2xf(3)(x)3f(x)3xf(3)(x)f(x)(=0)     M1A1

Note: Award M1 for an attempt at product rule differentiation of at least one product in each of the above two lines.
Do not penalise candidates who use poor notation.

(1x2)f(4)(x)5xf(3)(x)4f(x)=0      AG

[4 marks]

b.

attempting to find one of f(0)f(3)(0) or f(4)(0) by substituting x=0 into relevant differential equation(s)       (M1)

Note: Condone f(0) found by calculating ddx(2arcsin(x)1x2) at x=0.

(f(0)=0,f(0)=0)

f(0)=2 and f(4)(0)4f(0)=0f(4)(0)=8      A1

f(3)(0)=0 and so 22!x2+84!x4     A1

Note: Only award the above A1, for correct first differentiation in part (b) leading to f(3)(0)=0 stated or f(3)(0)=0 seen from use of the general Maclaurin series.
Special Case: Award (M1)A0A1 if f(4)(0)=8 is stated without justification or found by working backwards from the general Maclaurin series.

so the Maclaurin series for f(x) up to and including the term in x4 is x2+13x4     AG

[3 marks]

c.

substituting x=12 into x2+13x4      M1

the series approximation gives a value of 1348

so π21348×36

9.75(394)     A1

Note: Accept 9.76.

[2 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 9 - Option: Calculus » 9.6 » Taylor polynomials; the Lagrange form of the error term.

View options