Date | November 2016 | Marks available | 1 | Reference code | 16N.3ca.hl.TZ0.2 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Deduce | Question number | 2 | Adapted from | N/A |
Question
By successive differentiation find the first four non-zero terms in the Maclaurin series for f(x)=(x+1)ln(1+x)−x.
Deduce that, for n⩾2, the coefficient of xn in this series is (−1)n1n(n−1).
By applying the ratio test, find the radius of convergence for this Maclaurin series.
Markscheme
f(x)=(x+1)ln(1+x)−x f(0)=0 A1
f′(x)=ln(1+x)+x+11+x−1 (=ln(1+x)) f′(0)=0 M1A1A1
f″ f''(0) = 1 A1A1
f'''(x) = - {(1 + x)^{ - 2}} f'''(0) = - 1 A1
{f^{(4)}}(x) = 2{(1 + x)^{ - 3}} {f^{(4)}}(0) = 2 A1
{f^{(5)}}(x) = - 3 \times 2{(1 + x)^{ - 4}} {f^{(5)}}(0) = - 3 \times 2 A1
f(x) = \frac{{{x^2}}}{{2!}} - \frac{{1{x^3}}}{{3!}} + \frac{{2{x^4}}}{{4!}} - \frac{{6{x^5}}}{{5!}} \ldots M1A1
f(x) = \frac{{{x^2}}}{{1 \times 2}} - \frac{{{x^3}}}{{2 \times 3}} + \frac{{{x^4}}}{{3 \times 4}} - \frac{{{x^5}}}{{4 \times 5}} \ldots
f(x) = \frac{{{x^2}}}{2} - \frac{{{x^3}}}{6} + \frac{{{x^4}}}{{12}} - \frac{{{x^5}}}{{20}} \ldots
Note: Allow follow through from the first error in a derivative (provided future derivatives also include the chain rule), no follow through after a second error in a derivative.
[11 marks]
{f^{(n)}}(0) = {( - 1)^n}(n - 2)! So coefficient of {x^n} = {( - 1)^n}\frac{{(n - 2)!}}{{n!}} A1
coefficient of {x^n} is {( - 1)^n}\frac{1}{{n(n - 1)}} AG
[1 mark]
applying the ratio test to the series of absolute terms
\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{{{{\left| x \right|}^{n + 1}}}}{{(n + 1)n}}}}{{\frac{{{{\left| x \right|}^n}}}{{n(n - 1)}}}} M1A1
= \mathop {\lim }\limits_{n \to \infty } \left| x \right|\frac{{(n - 1)}}{{(n + 1)}} A1
= \left| x \right| A1
so for convergence \left| x \right| < 1, giving radius of convergence as 1 (M1)A1
[6 marks]