Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 9 Reference code 16N.3ca.hl.TZ0.4
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Deduce, Find, Hence, and Show Question number 4 Adapted from N/A

Question

Let f(x) be a function whose first and second derivatives both exist on the closed interval [0, h].

Let g(x)=f(h)f(x)(hx)f(x)(hx)2h2(f(h)f(0)hf(0)).

State the mean value theorem for a function that is continuous on the closed interval [a, b] and differentiable on the open interval ]a, b[.

[2]
a.

(i)     Find g(0).

(ii)     Find g(h).

(iii)     Apply the mean value theorem to the function g(x) on the closed interval [0, h] to show that there exists c in the open interval ]0, h[ such that g(c)=0.

(iv)     Find g(x).

(v)     Hence show that (hc)f.

(vi)     Deduce that f(h) = f(0) + hf'(0) + \frac{{{h^2}}}{2}{\text{ }}f''(c).

[9]
b.

Hence show that, for h > 0

1 - \cos (h) \leqslant \frac{{{h^2}}}{2}.

[5]
c.

Markscheme

there exists c in the open interval ]a,{\text{ }}b[ such that     A1

\frac{{f(b) - f(a)}}{{b - a}} = f'(c)    A1

 

Note: Open interval is required for the A1.

 

[2 marks]

a.

(i)     g(0) = f(h) - f(0) - hf'(0) - \frac{{{h^2}}}{{{h^2}}}\left( {{\text{ }}f(h) - f(0) - hf'(0)} \right)

= 0    A1

(ii)     g(h) = f(h) - f(h) - 0 - 0

= 0    A1

(iii)     (g(x) is a differentiable function since it is a combination of other differentiable functions f, {f'} and polynomials.)

there exists c in the open interval ]0,{\text{ }}h[ such that

\frac{{g(h) - g(0)}}{h} = g'(c)    A1

\frac{{g(h) - g(0)}}{h} = 0    A1

hence g'(c) = 0     AG

(iv)     g'(x) =  - f'(x) + f'(x) - (h - x)f''(x) + \frac{{2(h - x)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)     A1A1

 

Note: A1 for the second and third terms and A1 for the other terms (all terms must be seen).

 

=  - (h - x)f''(x) + \frac{{2(h - x)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)

(v)     putting x = c and equating to zero     M1

- (h - c)f''(c) + \frac{{2(h - c)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = g'(c) = 0    AG

(vi)     - f''(c) + \frac{2}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = 0     A1

since h - c \ne 0     R1

\frac{{{h^2}}}{2}f''(c) = f(h) - f(0) - hf'(0)

f(h) = f(0) + hf'(0) + \frac{{{h^2}}}{2}f''(c)    AG

[9 marks]

b.

letting f(x) = \cos (x)     M1

f'(x) =  - \sin (x)    f''(x) =  - \cos (x)     A1

\cos (h) = 1 + 0 - \frac{{{h^2}}}{2}\cos (c)     A1

1 - \cos (h) = \frac{{{h^2}}}{2}\cos (c)    (A1)

since \cos (c) \leqslant 1     R1

1 - \cos (h) \leqslant \frac{{{h^2}}}{2}    AG

 

Note: Allow f(x) = a \pm b\cos x.

 

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 9 - Option: Calculus » 9.6 » Mean value theorem.

View options