Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 11 Reference code 16N.3ca.hl.TZ0.2
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

By successive differentiation find the first four non-zero terms in the Maclaurin series for f(x)=(x+1)ln(1+x)x.

[11]
a.

Deduce that, for n, the coefficient of {x^n} in this series is {( - 1)^n}\frac{1}{{n(n - 1)}}.

[1]
b.

By applying the ratio test, find the radius of convergence for this Maclaurin series.

[6]
c.

Markscheme

f(x) = (x + 1)\ln (1 + x) - x     f(0) = 0    A1

f'(x) = \ln (1 + x) + \frac{{x + 1}}{{1 + x}} - 1{\text{ }}\left( { = \ln (1 + x)} \right)     f'(0) = 0    M1A1A1

f''(x) = {(1 + x)^{ - 1}}     f''(0) = 1    A1A1

f'''(x) =  - {(1 + x)^{ - 2}}     f'''(0) =  - 1    A1

{f^{(4)}}(x) = 2{(1 + x)^{ - 3}}     {f^{(4)}}(0) = 2    A1

{f^{(5)}}(x) =  - 3 \times 2{(1 + x)^{ - 4}}     {f^{(5)}}(0) =  - 3 \times 2    A1

f(x) = \frac{{{x^2}}}{{2!}} - \frac{{1{x^3}}}{{3!}} + \frac{{2{x^4}}}{{4!}} - \frac{{6{x^5}}}{{5!}} \ldots    M1A1

f(x) = \frac{{{x^2}}}{{1 \times 2}} - \frac{{{x^3}}}{{2 \times 3}} + \frac{{{x^4}}}{{3 \times 4}} - \frac{{{x^5}}}{{4 \times 5}} \ldots

f(x) = \frac{{{x^2}}}{2} - \frac{{{x^3}}}{6} + \frac{{{x^4}}}{{12}} - \frac{{{x^5}}}{{20}} \ldots

 

Note: Allow follow through from the first error in a derivative (provided future derivatives also include the chain rule), no follow through after a second error in a derivative.

 

[11 marks]

a.

{f^{(n)}}(0) = {( - 1)^n}(n - 2)! So coefficient of {x^n} = {( - 1)^n}\frac{{(n - 2)!}}{{n!}}     A1

coefficient of {x^n} is {( - 1)^n}\frac{1}{{n(n - 1)}}     AG

[1 mark]

b.

applying the ratio test to the series of absolute terms

\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{{{{\left| x \right|}^{n + 1}}}}{{(n + 1)n}}}}{{\frac{{{{\left| x \right|}^n}}}{{n(n - 1)}}}}    M1A1

= \mathop {\lim }\limits_{n \to \infty } \left| x \right|\frac{{(n - 1)}}{{(n + 1)}}    A1

= \left| x \right|    A1

so for convergence \left| x \right| < 1, giving radius of convergence as 1     (M1)A1

[6 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 9 - Option: Calculus » 9.6 » Mean value theorem.

View options