Date | November 2016 | Marks available | 2 | Reference code | 16N.3ca.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | State | Question number | 4 | Adapted from | N/A |
Question
Let \(f(x)\) be a function whose first and second derivatives both exist on the closed interval \([0,{\text{ }}h]\).
Let \(g(x) = f(h) - f(x) - (h - x)f'(x) - \frac{{{{(h - x)}^2}}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)\).
State the mean value theorem for a function that is continuous on the closed interval \([a,{\text{ }}b]\) and differentiable on the open interval \(]a,{\text{ }}b[\).
(i) Find \(g(0)\).
(ii) Find \(g(h)\).
(iii) Apply the mean value theorem to the function \(g(x)\) on the closed interval \([0,{\text{ }}h]\) to show that there exists \(c\) in the open interval \(]0,{\text{ }}h[\) such that \(g'(c) = 0\).
(iv) Find \(g'(x)\).
(v) Hence show that \( - (h - c)f''(c) + \frac{{2(h - c)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = 0\).
(vi) Deduce that \(f(h) = f(0) + hf'(0) + \frac{{{h^2}}}{2}{\text{ }}f''(c)\).
Hence show that, for \(h > 0\)
\(1 - \cos (h) \leqslant \frac{{{h^2}}}{2}\).
Markscheme
there exists \(c\) in the open interval \(]a,{\text{ }}b[\) such that A1
\(\frac{{f(b) - f(a)}}{{b - a}} = f'(c)\) A1
Note: Open interval is required for the A1.
[2 marks]
(i) \(g(0) = f(h) - f(0) - hf'(0) - \frac{{{h^2}}}{{{h^2}}}\left( {{\text{ }}f(h) - f(0) - hf'(0)} \right)\)
\( = 0\) A1
(ii) \(g(h) = f(h) - f(h) - 0 - 0\)
\( = 0\) A1
(iii) (\(g(x)\) is a differentiable function since it is a combination of other differentiable functions \(f\), \({f'}\) and polynomials.)
there exists \(c\) in the open interval \(]0,{\text{ }}h[\) such that
\(\frac{{g(h) - g(0)}}{h} = g'(c)\) A1
\(\frac{{g(h) - g(0)}}{h} = 0\) A1
hence \(g'(c) = 0\) AG
(iv) \(g'(x) = - f'(x) + f'(x) - (h - x)f''(x) + \frac{{2(h - x)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)\) A1A1
Note: A1 for the second and third terms and A1 for the other terms (all terms must be seen).
\( = - (h - x)f''(x) + \frac{{2(h - x)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)\)
(v) putting \(x = c\) and equating to zero M1
\( - (h - c)f''(c) + \frac{{2(h - c)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = g'(c) = 0\) AG
(vi) \( - f''(c) + \frac{2}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = 0\) A1
since \(h - c \ne 0\) R1
\(\frac{{{h^2}}}{2}f''(c) = f(h) - f(0) - hf'(0)\)
\(f(h) = f(0) + hf'(0) + \frac{{{h^2}}}{2}f''(c)\) AG
[9 marks]
letting \(f(x) = \cos (x)\) M1
\(f'(x) = - \sin (x)\) \(f''(x) = - \cos (x)\) A1
\(\cos (h) = 1 + 0 - \frac{{{h^2}}}{2}\cos (c)\) A1
\(1 - \cos (h) = \frac{{{h^2}}}{2}\cos (c)\) (A1)
since \(\cos (c) \leqslant 1\) R1
\(1 - \cos (h) \leqslant \frac{{{h^2}}}{2}\) AG
Note: Allow \(f(x) = a \pm b\cos x\).
[5 marks]