Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.2.hl.TZ2.11
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 11 Adapted from N/A

Question

A curve C is given by the implicit equation x+ycos(xy)=0.

The curve xy=π2 intersects C at P and Q.

Show that dydx=(1+ysin(xy)1+xsin(xy)).

[5]
a.

Find the coordinates of P and Q.

[4]
b.i.

Given that the gradients of the tangents to C at P and Q are m1 and m2 respectively, show that m1 × m2 = 1.

[3]
b.ii.

Find the coordinates of the three points on C, nearest the origin, where the tangent is parallel to the line y=x.

[7]
c.

Markscheme

attempt at implicit differentiation      M1

1+dydx+(y+xdydx)sin(xy)=0     A1M1A1

Note: Award A1 for first two terms. Award M1 for an attempt at chain rule A1 for last term.

(1+xsin(xy))dydx=1ysin(xy)     A1

dydx=(1+ysin(xy)1+xsin(xy))     AG

[5 marks]

a.

EITHER

when xy=π2,cosxy=0     M1

x+y=0    (A1)

OR

xπ2xcos(π2)=0 or equivalent      M1

xπ2x=0     (A1)

THEN

therefore x2=π2(x=±π2)(x=±1.25)     A1

P(π2,π2),Q(π2,π2) or P(1.25,1.25),Q(1.25,1.25)     A1

[4 marks]

b.i.

m1 = (1π2×11+π2×1)     M1A1

m(1+π2×11π2×1)     A1

mm= 1     AG

Note: Award M1A0A0 if decimal approximations are used.
Note: No FT applies.

[3 marks]

b.ii.

equate derivative to −1    M1

(yx)sin(xy)=0     (A1)

y=x,sin(xy)=0     R1

in the first case, attempt to solve 2x=cos(x2)     M1

(0.486,0.486)      A1

in the second case, sin(xy)=0xy=0 and x+y=1     (M1)

(0,1), (1,0)      A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Informal ideas of limit, continuity and convergence.
Show 23 related questions

View options