Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.2.hl.TZ1.6
Level HL only Paper 2 Time zone TZ1
Command term Solve Question number 6 Adapted from N/A

Question

Let f(x)=x(x+2)6.

Solve the inequality f(x)>x.

[5]
a.

Find f(x)dx.

[5]
b.

Markscheme

METHOD 1

sketch showing where the lines cross or zeros of y=x(x+2)6x     (M1)

x=0     (A1)

x=1 and x=3     (A1)

the solution is 3<x<1 or x>0     A1A1

 

Note:     Do not award either final A1 mark if strict inequalities are not given.

 

METHOD 2

separating into two cases x>0 and x<0     (M1)

if x>0 then (x+2)6>1 always true     (M1)

if x<0 then (x+2)6<13<x<1     (M1)

so the solution is 3<x<1 or x>0     A1A1

 

Note:     Do not award either final A1 mark if strict inequalities are not given.

 

METHOD 3

f(x)=x7+12x6+60x5+160x4+240x3+192x2+64x     (A1)

solutions to x7+12x6+60x5+160x4+240x3+192x2+63x=0 are     (M1)

x=0, x=1 and x=3     (A1)

so the solution is 3<x<1 or x>0     A1A1

 

Note:     Do not award either final A1 mark if strict inequalities are not given.

 

METHOD 4

f(x)=x when x(x+2)6=x

either x=0 or (x+2)6=1     (A1)

if (x+2)6=1 then x+2=±1 so x=1 or x=3     (M1)(A1)

the solution is 3<x<1 or x>0     A1A1

 

Note:     Do not award either final A1 mark if strict inequalities are not given.

 

[5 marks]

a.

METHOD 1 (by substitution)

substituting u=x+2     (M1)

du=dx

(u2)u6du     M1A1

=18u827u7(+c)     (A1)

=18(x+2)827(x+2)7(+c)     A1

METHOD 2 (by parts)

u=xdudx=1, dvdx=(x+2)6v=17(x+2)7  (M1)(A1)

x(x+2)6dx=17x(x+2)717(x+2)7dx     M1

=17x(x+2)7156(x+2)8(+c)     A1A1

METHOD 3 (by expansion)

f(x)dx=(x7+12x6+60x5+160x4+240x3+192x2+64x)dx     M1A1

=18x8+127x7+10x6+32x5+60x4+64x3+32x2(+c)     M1A2

 

Note:     Award M1A1 if at least four terms are correct.

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.7 » Solutions of g(x) .

View options