Date | May 2014 | Marks available | 5 | Reference code | 14M.2.hl.TZ1.6 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Solve | Question number | 6 | Adapted from | N/A |
Question
Let f(x)=x(x+2)6.
Solve the inequality f(x)>x.
Find ∫f(x)dx.
Markscheme
METHOD 1
sketch showing where the lines cross or zeros of y=x(x+2)6−x (M1)
x=0 (A1)
x=−1 and x=−3 (A1)
the solution is −3<x<−1 or x>0 A1A1
Note: Do not award either final A1 mark if strict inequalities are not given.
METHOD 2
separating into two cases x>0 and x<0 (M1)
if x>0 then (x+2)6>1⇒ always true (M1)
if x<0 then (x+2)6<1⇒−3<x<−1 (M1)
so the solution is −3<x<−1 or x>0 A1A1
Note: Do not award either final A1 mark if strict inequalities are not given.
METHOD 3
f(x)=x7+12x6+60x5+160x4+240x3+192x2+64x (A1)
solutions to x7+12x6+60x5+160x4+240x3+192x2+63x=0 are (M1)
x=0, x=−1 and x=−3 (A1)
so the solution is −3<x<−1 or x>0 A1A1
Note: Do not award either final A1 mark if strict inequalities are not given.
METHOD 4
f(x)=x when x(x+2)6=x
either x=0 or (x+2)6=1 (A1)
if (x+2)6=1 then x+2=±1 so x=−1 or x=−3 (M1)(A1)
the solution is −3<x<−1 or x>0 A1A1
Note: Do not award either final A1 mark if strict inequalities are not given.
[5 marks]
METHOD 1 (by substitution)
substituting u=x+2 (M1)
du=dx
∫(u−2)u6du M1A1
=18u8−27u7(+c) (A1)
=18(x+2)8−27(x+2)7(+c) A1
METHOD 2 (by parts)
u=x⇒dudx=1, dvdx=(x+2)6⇒v=17(x+2)7 (M1)(A1)
∫x(x+2)6dx=17x(x+2)7−17∫(x+2)7dx M1
=17x(x+2)7−156(x+2)8(+c) A1A1
METHOD 3 (by expansion)
∫f(x)dx=∫(x7+12x6+60x5+160x4+240x3+192x2+64x)dx M1A1
=18x8+127x7+10x6+32x5+60x4+64x3+32x2(+c) M1A2
Note: Award M1A1 if at least four terms are correct.
[5 marks]