User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.2.hl.TZ1.11
Level HL only Paper 2 Time zone TZ1
Command term Calculate Question number 11 Adapted from N/A

Question

Xavier, the parachutist, jumps out of a plane at a height of \(h\) metres above the ground. After free falling for 10 seconds his parachute opens. His velocity, \(v\,{\text{m}}{{\text{s}}^{ - 1}}\), \(t\) seconds after jumping from the plane, can be modelled by the function

\(v(t) = \left\{ {\begin{array}{*{20}{l}} {9.8t{\text{,}}}&{0 \leqslant t \leqslant 10} \\ {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }},}&{t > 10} \end{array}} \right.\)

His velocity when he reaches the ground is \(2.8{\text{ m}}{{\text{s}}^{ - 1}}\).

Find his velocity when \(t = 15\).

[2]
a.

Calculate the vertical distance Xavier travelled in the first 10 seconds.

[2]
b.

Determine the value of \(h\).

[5]
c.

Markscheme

\(v(15) = \frac{{98}}{{\sqrt {1 + {{(15 - 10)}^2}} }}\)     (M1)

\(v(15) = 19.2{\text{ }}({\text{m}}{{\text{s}}^{ - 1}})\)     A1

[2 marks]

a.

\(\int\limits_0^{10} {9.8t\,{\text{d}}t} \)    (M1)

\( = 490{\text{ }}({\text{m}})\)     A1

[2 marks]

b.

\(\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }} = 2.8\)     (M1)

\(t = 44.985 \ldots {\text{ }}({\text{s}})\)     A1

\(h = 490 + \int\limits_{10}^{44.9...} {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }}{\text{d}}t} \)    (M1)(A1)

\(h = 906{\text{ (m}})\)     A1

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.6
Show 41 related questions

View options