User interface language: English | Español

Date November 2016 Marks available 6 Reference code 16N.1.hl.TZ0.10
Level HL only Paper 1 Time zone TZ0
Command term Hence and Show that Question number 10 Adapted from N/A

Question

Consider two events \(A\) and \(A\) defined in the same sample space.

Given that \({\text{P}}(A \cup B) = \frac{4}{9},{\text{ P}}(B|A) = \frac{1}{3}\) and \({\text{P}}(B|A') = \frac{1}{6}\),

Show that \({\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(A' \cap B)\).

[3]
a.

(i)     show that \({\text{P}}(A) = \frac{1}{3}\);

(ii)     hence find \({\text{P}}(B)\).

[6]
b.

Markscheme

METHOD 1

\({\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)\)    M1

\( = {\text{P}}(A) + {\text{P}}(A \cap B) + {\text{P}}(A' \cap B) - {\text{P}}(A \cap B)\)    M1A1

\( = {\text{P}}(A) + {\text{P}}(A' \cap B)\)    AG

METHOD 2

\({\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)\)    M1

\( = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A|B) \times {\text{P}}(B)\)    M1

\( = {\text{P}}(A) + \left( {1 - {\text{P}}(A|B)} \right) \times {\text{P}}(B)\)

\( = {\text{P}}(A) + {\text{P}}(A'|B) \times {\text{P}}(B)\)    A1

\( = {\text{P}}(A) + {\text{P}}(A' \cap B)\)    AG

[3 marks]

a.

(i)     use \({\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(A' \cap B)\) and \({\text{P}}(A' \cap B) = {\text{P}}(B|A'){\text{P}}(A')\)     (M1)

\(\frac{4}{9} = {\text{P}}(A) + \frac{1}{6}\left( {1 - {\text{P}}(A)} \right)\)    A1

\(8 = 18{\text{P}}(A) + 3\left( {1 - {\text{P}}(A)} \right)\)    M1

\({\text{P}}(A) = \frac{1}{3}\)    AG

(ii)     METHOD 1

\({\text{P}}(B) = {\text{P}}(A \cap B) + {\text{P}}(A' \cap B)\)    M1

\( = {\text{P}}(B|A){\text{P}}(A) + {\text{P}}(B|A'){\text{P}}(A')\)    M1

\( = \frac{1}{3} \times \frac{1}{3} + \frac{1}{6} \times \frac{2}{3} = \frac{2}{9}\)    A1

METHOD 2

\({\text{P}}(A \cap B) = {\text{P}}(B|A){\text{P}}(A) \Rightarrow {\text{P}}(A \cap B) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}\)    M1

\({\text{P}}(B) = {\text{P}}(A \cup B) + {\text{P}}(A \cap B) - {\text{P}}(A)\)    M1

\({\text{P}}(B) = \frac{4}{9} + \frac{1}{9} - \frac{1}{3} = \frac{2}{9}\)    A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.4 » Conditional probability; the definition \(P\left( {\left. A \right|P} \right) = \frac{{P\left( {A\mathop \cap \nolimits B} \right)}}{{P\left( B \right)}}\) .
Show 23 related questions

View options