Date | May 2018 | Marks available | 7 | Reference code | 18M.1.hl.TZ0.5 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 5 | Adapted from | N/A |
Question
Use the integral test to determine whether or not \(\sum\limits_{n = 2}^\infty {\frac{1}{{n{{\left( {{\text{ln}}\,n} \right)}^2}}}} \) converges.
Markscheme
let \(u = {\text{ln}}\,x\) (M1)
\( \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)
\(\int {\frac{1}{{x{{\left( {{\text{ln}}\,x} \right)}^2}}}} \,{\text{d}}x = \int {\frac{1}{{{u^2}}}} \,{\text{d}}u\) (A1)
\( = - \frac{1}{u} = - \frac{1}{{{\text{ln}}\,x}}\) (A1)
\(\int\limits_2^m {\frac{1}{{x{{\left( {{\text{ln}}\,x} \right)}^2}}}} \,{\text{d}}x = \left[ { - \frac{1}{{{\text{ln}}\,x}}} \right]_2^m\) M1
\( = \left[ { - \frac{1}{{{\text{ln}}\,m}} + - \frac{1}{{{\text{ln}}\,2}}} \right]\) A1
as \(m \to \infty \), \( - \frac{1}{{{\text{ln}}\,m}} \to 0\) (A1)
\(\int\limits_2^\infty {\frac{1}{{x{{\left( {{\text{ln}}\,x} \right)}^2}}}} \,{\text{d}}x = \frac{1}{{{\text{ln}}\,2}}\) and hence the series converges R1
[7 marks]