User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.1.hl.TZ0.5
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 5 Adapted from N/A

Question

Use the integral test to determine whether or not \(\sum\limits_{n = 2}^\infty  {\frac{1}{{n{{\left( {{\text{ln}}\,n} \right)}^2}}}} \) converges.

Markscheme

let \(u = {\text{ln}}\,x\)     (M1)

\( \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)

\(\int {\frac{1}{{x{{\left( {{\text{ln}}\,x} \right)}^2}}}} \,{\text{d}}x = \int {\frac{1}{{{u^2}}}} \,{\text{d}}u\)      (A1)

\( =  - \frac{1}{u} =  - \frac{1}{{{\text{ln}}\,x}}\)      (A1)

\(\int\limits_2^m {\frac{1}{{x{{\left( {{\text{ln}}\,x} \right)}^2}}}} \,{\text{d}}x = \left[ { - \frac{1}{{{\text{ln}}\,x}}} \right]_2^m\)     M1

\( = \left[ { - \frac{1}{{{\text{ln}}\,m}} +  - \frac{1}{{{\text{ln}}\,2}}} \right]\)     A1

as \(m \to \infty \), \( - \frac{1}{{{\text{ln}}\,m}} \to 0\)      (A1)

\(\int\limits_2^\infty  {\frac{1}{{x{{\left( {{\text{ln}}\,x} \right)}^2}}}} \,{\text{d}}x = \frac{1}{{{\text{ln}}\,2}}\) and hence the series converges       R1

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Calculus » 5.2 » Convergence of infinite series.

View options