User interface language: English | Español

Date May 2008 Marks available 3 Reference code 08M.2.hl.TZ0.6
Level HL only Paper 2 Time zone TZ0
Command term Hence and Show that Question number 6 Adapted from N/A

Question

Let \({S_n} = \sum\limits_{k = 1}^n {\frac{1}{k}} \) .

Show that, for \(n \ge 2\) , \({S_{2n}} > {S_n} + \frac{1}{2}\) .

[3]
a.

Deduce that \({S_{2m + 1}} > {S_2} + \frac{m}{2}\) .

[7]
b.

Hence show that the sequence \(\left\{ {{S_n}} \right\}\) is divergent.

[3]
c.

Markscheme

\({S_{2n}} = {S_n} + \frac{1}{{n + 1}} + \frac{1}{{n + 2}} +  \ldots  + \frac{1}{{2n}}\)     M1

\( > {S_n} + \frac{1}{{2n}} + \frac{1}{{2n}} +  \ldots  + \frac{1}{{2n}}\)     M1A1

\( = {S_n} + \frac{1}{2}\)     AG

[3 marks]

a.

Replacing \(n\) by \(2n\),

\({S_{4n}} > {S_{2n}} + \frac{1}{2}\)     M1A1

\( > {S_n} + 1\)     A1

Continuing this process,

\({S_{8n}} > {S_n} + \frac{3}{2}\)     (A1)

In general,

\({S_{{2^m}n}} > {S_n} + \frac{m}{2}\)     M1A1

Putting \(n = 2\)     M1

\({S_{{2^{m + 1}}}} > {S_2} + \frac{m}{2}\)     AG

[7 marks]

b.

Consider the (large) number \(N\).     M1

Then, \({S_{2m + 1}} > N\) if \({S_2} + \frac{m}{2} > N\)     A1

i.e. if \(m > 2(N - {S_2})\)     A1

This establishes the divergence.     AG

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.2 » Convergence of infinite series.

View options