Processing math: 100%

User interface language: English | Español

Date May 2008 Marks available 3 Reference code 08M.2.hl.TZ0.6
Level HL only Paper 2 Time zone TZ0
Command term Hence and Show that Question number 6 Adapted from N/A

Question

Let Sn=nk=11k .

Show that, for n2 , S2n>Sn+12 .

[3]
a.

Deduce that S2m+1>S2+m2 .

[7]
b.

Hence show that the sequence {Sn} is divergent.

[3]
c.

Markscheme

S2n=Sn+1n+1+1n+2++12n     M1

>Sn+12n+12n++12n     M1A1

=Sn+12     AG

[3 marks]

a.

Replacing n by 2n,

S4n>S2n+12     M1A1

>Sn+1     A1

Continuing this process,

S8n>Sn+32     (A1)

In general,

S2mn>Sn+m2     M1A1

Putting n=2     M1

S2m+1>S2+m2     AG

[7 marks]

b.

Consider the (large) number N.     M1

Then, S2m+1>N if S2+m2>N     A1

i.e. if m>2(NS2)     A1

This establishes the divergence.     AG

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.2 » Convergence of infinite series.

View options