Date | May 2008 | Marks available | 3 | Reference code | 08M.2.hl.TZ0.6 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Hence and Show that | Question number | 6 | Adapted from | N/A |
Question
Let \({S_n} = \sum\limits_{k = 1}^n {\frac{1}{k}} \) .
Show that, for \(n \ge 2\) , \({S_{2n}} > {S_n} + \frac{1}{2}\) .
Deduce that \({S_{2m + 1}} > {S_2} + \frac{m}{2}\) .
Hence show that the sequence \(\left\{ {{S_n}} \right\}\) is divergent.
Markscheme
\({S_{2n}} = {S_n} + \frac{1}{{n + 1}} + \frac{1}{{n + 2}} + \ldots + \frac{1}{{2n}}\) M1
\( > {S_n} + \frac{1}{{2n}} + \frac{1}{{2n}} + \ldots + \frac{1}{{2n}}\) M1A1
\( = {S_n} + \frac{1}{2}\) AG
[3 marks]
Replacing \(n\) by \(2n\),
\({S_{4n}} > {S_{2n}} + \frac{1}{2}\) M1A1
\( > {S_n} + 1\) A1
Continuing this process,
\({S_{8n}} > {S_n} + \frac{3}{2}\) (A1)
In general,
\({S_{{2^m}n}} > {S_n} + \frac{m}{2}\) M1A1
Putting \(n = 2\) M1
\({S_{{2^{m + 1}}}} > {S_2} + \frac{m}{2}\) AG
[7 marks]
Consider the (large) number \(N\). M1
Then, \({S_{2m + 1}} > N\) if \({S_2} + \frac{m}{2} > N\) A1
i.e. if \(m > 2(N - {S_2})\) A1
This establishes the divergence. AG
[3 marks]