Processing math: 63%

User interface language: English | Español

Date May 2007 Marks available 9 Reference code 07M.2.hl.TZ0.4
Level HL only Paper 2 Time zone TZ0
Command term Determine Question number 4 Adapted from N/A

Question

The function f is defined by f(x)=ex+ex2 .

  (i)     Obtain an expression for f(n)(x) , the nth derivative of f(x) with respect to x.

  (ii)     Hence derive the Maclaurin series for f(x) up to and including the term in x4 .

  (iii)     Use your result to find a rational approximation to f(12) .

  (iv)     Use the Lagrange error term to determine an upper bound to the error in this approximation.

[13]
a.

Use the integral test to determine whether the series n=1lnnn2 is convergent or divergent.

[9]
b.

Markscheme

(i)     f(n)(x)=ex+(1)nex2     (M1)A1

 

(ii)     Coefficient of xn=f(n)(0)n!     (M1)

=1+(1)n2n!     (A1)

f(x)=1+x22+x424+     A1

 

(iii)     Putting x=12     M1

f(0.5)=1+18+116×24=433384     (M1)A1

 

(iv)     Lagrange error term =f(n+1)(c)(n+1)!xn+1     M1

=f(5)(c)120×(12)5     A1

f(5)(c) is an increasing function because – any valid reason, e.g. plotted a graph, positive derivative, increasing function minus a decreasing function, so this is maximized when x=0.5 .     R1

Therefore upper bound =(e0.5e0.5)2×120×(12)5     M1

=0.000136     A1

 

[13 marks]

a.

We consider 1lnxx2dx=1lnxdx(12)     M1A1

=[lnxx]1+11xx2dx     A1A1

=[lnxx]1[1x]1     A1

Now lim     R1

\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{\ln x}}{x}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right) = 0     M1A1

The integral is convergent with value 1 and so therefore is the series.      R1

[9 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Calculus » 5.2 » Convergence of infinite series.

View options