Date | May 2007 | Marks available | 9 | Reference code | 07M.2.hl.TZ0.4 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Determine | Question number | 4 | Adapted from | N/A |
Question
The function \(f\) is defined by \(f(x) = \frac{{{{\rm{e}}^x} + {{\rm{e}}^{ - x}}}}{2}\) .
(i) Obtain an expression for \({f^{(n)}}(x)\) , the nth derivative of \(f(x)\) with respect to \(x\).
(ii) Hence derive the Maclaurin series for \(f(x)\) up to and including the term in \({x^4}\) .
(iii) Use your result to find a rational approximation to \(f\left( {\frac{1}{2}} \right)\) .
(iv) Use the Lagrange error term to determine an upper bound to the error in this approximation.
Use the integral test to determine whether the series \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^2}}}} \) is convergent or divergent.
Markscheme
(i) \({f^{(n)}}(x) = \frac{{{{\rm{e}}^x} + {{( - 1)}^n}{{\rm{e}}^{ - x}}}}{2}\) (M1)A1
(ii) Coefficient of \({x^n} = \frac{{{f^{(n)}}(0)}}{{n!}}\) (M1)
\( = \frac{{1 + {{( - 1)}^n}}}{{2n!}}\) (A1)
\(f(x) = 1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + \ldots \) A1
(iii) Putting \(x = \frac{1}{2}\) M1
\(f(0.5) = 1 + \frac{1}{8} + \frac{1}{{16 \times 24}} = \frac{{433}}{{384}}\) (M1)A1
(iv) Lagrange error term \( = \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{x^{n + 1}}\) M1
\( = \frac{{{f^{(5)}}(c)}}{{120}} \times {\left( {\frac{1}{2}} \right)^5}\) A1
\({{f^{(5)}}(c)}\) is an increasing function because – any valid reason, e.g. plotted a graph, positive derivative, increasing function minus a decreasing function, so this is maximized when \(x = 0.5\) . R1
Therefore upper bound \( = \frac{{({{\rm{e}}^{0.5}} - {{\rm{e}}^{ - 0.5}})}}{{2 \times 120}} \times {\left( {\frac{1}{2}} \right)^5}\) M1
\( = 0.000136\) A1
[13 marks]
We consider \(\int_1^\infty {\frac{{\ln x}}{{{x^2}}}} {\rm{d}}x = \int_1^\infty {\ln x{\rm{d}}x} \left( { - \frac{1}{2}} \right)\) M1A1
\( = \left[ { - \frac{{\ln x}}{x}} \right]_1^\infty + \int_1^\infty {\frac{{1x}}{{{x^2}}}} {\rm{d}}x\) A1A1
\( = \left[ { - \frac{{\ln x}}{x}} \right]_1^\infty - \left[ {\frac{1}{x}} \right]_1^\infty \) A1
Now \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right) = 0\) R1
\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{\ln x}}{x}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right) = 0\) M1A1
The integral is convergent with value \(1\) and so therefore is the series. R1
[9 marks]