User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ0.7
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 7 Adapted from N/A

Question

The function \(f\) is defined by

\[f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}} + 2\cos x}}{4},{\text{ }}x \in \mathbb{R}.\]

The random variable \(X\) has a Poisson distribution with mean \(\mu \).

Show that \({f^{(4)}}x = f(x)\);

[4]
a.i.

By considering derivatives of \(f\), determine the first three non-zero terms of the Maclaurin series for \(f(x)\).

[4]
a.ii.

Write down a series in terms of \(\mu \) for the probability \(p = {\text{P}}[X \equiv 0(\bmod 4)]\).

[2]
b.i.

Show that \(p = {{\text{e}}^{ - \mu }}f(\mu )\).

[1]
b.ii.

Determine the numerical value of \(p\) when \(\mu  = 3\).

[2]
b.iii.

Markscheme

\(f’(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}} - 2\sin x}}{4}\)     (A1)

\(f’’(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}} - 2\cos x}}{4}\)     (A1)

\(f’’’(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}} + 2\sin x}}{4}\)     (A1)

\({f^{(4)}}(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}} + 2\cos x}}{4} = f(x)\)     AG

[4 marks]

a.i.

therefore,

\(f(0) = 1\) and \({f^{(4)}}(0) = 1\)     (A1)

\(f’(0) = f''(0) = f'''(0) = 0\)     (A1)

the sequence of derivatives repeats itself so the next non-zero derivative is \({f^{(8)}}(0) = 1\)     (A1)

the MacLaurin series is \(1 + \frac{{{x^4}}}{{4!}} + \frac{{{x^8}}}{{8!}}( +  \ldots )\)     (M1)A1

[4 marks]

a.ii.

\(p = {\text{P}}(X = 0) + {\text{P}}(X = 4) + {\text{P}}(X = 8) +  \ldots \)     (M1)

\( = \frac{{{{\text{e}}^{ - \mu }}{\mu ^0}}}{{0!}} + \frac{{{{\text{e}}^{ - \mu }}{\mu ^4}}}{{4!}} + \frac{{{{\text{e}}^{ - \mu }}{\mu ^8}}}{{8!}} +  \ldots \)     A1

[??? marks]

b.i.

\(p = {{\text{e}}^{ - \mu }}\left( {1 + \frac{{{\mu ^4}}}{{4!}} + \frac{{{\mu ^8}}}{{8!}} +  \ldots } \right)\)     A1

\( = {{\text{e}}^{ - \mu }}f(\mu )\)     AG

[??? marks]

b.ii.

\(p = {{\text{e}}^{ - 3}}\left( {\frac{{{{\text{e}}^3} + {{\text{e}}^{ - 3}} + 2\cos 3}}{4}} \right)\)     (M1)

\( = 0.226\)     A1

[??? marks]

b.iii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.

Syllabus sections

Topic 5 - Calculus » 5.6
Show 23 related questions

View options