Date | None Specimen | Marks available | 4 | Reference code | SPNone.1.hl.TZ0.11 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 11 | Adapted from | N/A |
Question
The function f is defined by f(x)=excosx .
Show that f″ .
Determine the Maclaurin series for f(x) up to and including the term in {x^4} .
By differentiating your series, determine the Maclaurin series for {{\rm{e}}^x}\sin x up to the term in {x^3} .
Markscheme
f'(x) = {{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x A1
f''(x) = {{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x - {{\rm{e}}^x}\sin x - {{\rm{e}}^x}\cos x A1
= - 2{{\rm{e}}^x}\sin x AG
[2 marks]
f'''(x) = - 2{{\rm{e}}^x}\sin x - 2{{\rm{e}}^x}\cos x A1
{f^{IV}}(x) = - 4{{\rm{e}}^x}\cos x A1
f(0) = 1, f'(0) = 1 ,f''(0) = 0, f'''(0) = - 2, {f^{IV}}(0) = - 4 (A1)
the Maclaurin series is
{{\rm{e}}^x}\cos x = 1 + x - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{6} + \ldots M1A1
Note: Accept multiplication of series method.
[5 marks]
differentiating,
{{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x = 1 - {x^2} - \frac{{2{x^3}}}{3} + \ldots M1A1
{{\rm{e}}^x}\sin x = 1 + {x^{}} - \frac{{{x^3}}}{3} + \ldots - 1 + {x^2} + \frac{{2{x^3}}}{3} + \ldots M1
= x + {x^2} + \frac{{{x^3}}}{3} + \ldots A1
[4 marks]