Processing math: 5%

User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 11 Adapted from N/A

Question

The function f is defined by f(x)=excosx .

Show that f .

[2]
a.

Determine the Maclaurin series for f(x) up to and including the term in {x^4} .

[5]
b.

By differentiating your series, determine the Maclaurin series for {{\rm{e}}^x}\sin x up to the term in {x^3} .

[4]
c.

Markscheme

f'(x) = {{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x     A1

f''(x) = {{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x - {{\rm{e}}^x}\sin x - {{\rm{e}}^x}\cos x     A1

 = - 2{{\rm{e}}^x}\sin x     AG

[2 marks]

a.

f'''(x) = - 2{{\rm{e}}^x}\sin x - 2{{\rm{e}}^x}\cos x     A1

{f^{IV}}(x) = - 4{{\rm{e}}^x}\cos x     A1

f(0) = 1, f'(0) = 1 ,f''(0) = 0, f'''(0) = - 2, {f^{IV}}(0) = - 4     (A1)

the Maclaurin series is

{{\rm{e}}^x}\cos x = 1 + x - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{6} +  \ldots      M1A1

Note: Accept multiplication of series method.

[5 marks]

b.

differentiating,

{{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x = 1 - {x^2} - \frac{{2{x^3}}}{3} +  \ldots      M1A1

{{\rm{e}}^x}\sin x = 1 + {x^{}} - \frac{{{x^3}}}{3} +  \ldots  - 1 + {x^2} + \frac{{2{x^3}}}{3} +  \ldots      M1

= x + {x^2} + \frac{{{x^3}}}{3} +  \ldots      A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.6 » Maclaurin series for {{\text{e}}^x} , \sin x , \cos x , \ln (1 + x) , {(1 + x)^p} , P \in \mathbb{Q} .

View options