User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 11 Adapted from N/A

Question

The function \(f\) is defined by \(f(x) = {{\rm{e}}^x}\cos x\) .

Show that \(f''(x) = - 2{{\rm{e}}^x}\sin x\) .

[2]
a.

Determine the Maclaurin series for \(f(x)\) up to and including the term in \({x^4}\) .

[5]
b.

By differentiating your series, determine the Maclaurin series for \({{\rm{e}}^x}\sin x\) up to the term in \({x^3}\) .

[4]
c.

Markscheme

\(f'(x) = {{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x\)     A1

\(f''(x) = {{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x - {{\rm{e}}^x}\sin x - {{\rm{e}}^x}\cos x\)     A1

\( = - 2{{\rm{e}}^x}\sin x\)     AG

[2 marks]

a.

\(f'''(x) = - 2{{\rm{e}}^x}\sin x - 2{{\rm{e}}^x}\cos x\)     A1

\({f^{IV}}(x) = - 4{{\rm{e}}^x}\cos x\)     A1

\(f(0) = 1\), \(f'(0) = 1\) ,\(f''(0) = 0\), \(f'''(0) = - 2\), \({f^{IV}}(0) = - 4\)     (A1)

the Maclaurin series is

\({{\rm{e}}^x}\cos x = 1 + x - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{6} +  \ldots \)     M1A1

Note: Accept multiplication of series method.

[5 marks]

b.

differentiating,

\({{\rm{e}}^x}\cos x - {{\rm{e}}^x}\sin x = 1 - {x^2} - \frac{{2{x^3}}}{3} +  \ldots \)     M1A1

\({{\rm{e}}^x}\sin x = 1 + {x^{}} - \frac{{{x^3}}}{3} +  \ldots  - 1 + {x^2} + \frac{{2{x^3}}}{3} +  \ldots \)     M1

\( = x + {x^2} + \frac{{{x^3}}}{3} +  \ldots \)     A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.6 » Maclaurin series for \({{\text{e}}^x}\) , \(\sin x\) , \(\cos x\) , \(\ln (1 + x)\) , \({(1 + x)^p}\) , \(P \in \mathbb{Q}\) .

View options