Processing math: 100%

User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 11 Adapted from N/A

Question

The function f is defined by f(x)=excosx .

Show that f(x)=2exsinx .

[2]
a.

Determine the Maclaurin series for f(x) up to and including the term in x4 .

[5]
b.

By differentiating your series, determine the Maclaurin series for exsinx up to the term in x3 .

[4]
c.

Markscheme

f(x)=excosxexsinx     A1

f(x)=excosxexsinxexsinxexcosx     A1

=2exsinx     AG

[2 marks]

a.

f(x)=2exsinx2excosx     A1

fIV(x)=4excosx     A1

f(0)=1, f(0)=1 ,f(0)=0, f(0)=2, fIV(0)=4     (A1)

the Maclaurin series is

excosx=1+xx33x46+     M1A1

Note: Accept multiplication of series method.

[5 marks]

b.

differentiating,

excosxexsinx=1x22x33+     M1A1

exsinx=1+xx33+1+x2+2x33+     M1

=x+x2+x33+     A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.6 » Maclaurin series for ex , sinx , cosx , ln(1+x) , (1+x)p , PQ .

View options