Processing math: 0%

User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Hence and Find Question number 2 Adapted from N/A

Question

Consider the linear congruence axb(mod where a,{\text{ }}b \in {\mathbb{Z}^ + },{\text{ }}p is a prime and \gcd (a,{\text{ }}p) = 1. Using Fermat’s little theorem, show that x \equiv {a^{p - 2}}b(\bmod p).

[3]
a.

Hence find the smallest value of x greater than 100 satisfying the linear congruence 3x \equiv 13(\bmod 19).

[4]
b.

Markscheme

multiplying both sides by {a^{p - 2}},     M1

{a^{p - 1}}x \equiv {a^{p - 2}}b(\bmod p)     A1

using {a^{p - 1}} \equiv 1(\bmod p)     R1

therefore, x \equiv {a^{p - 2}}b(\bmod p)     AG

[3 marks]

a.

using the above result,

x \equiv {3^{17}} \times 13(\bmod 19){\text{ }}\left( { \equiv 16\,7882\,2119(\bmod 19)} \right)     A1

\equiv 17(\bmod 19)     (M1)A1

x = 112     A1

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.4

View options