Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ0.2 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Hence and Find | Question number | 2 | Adapted from | N/A |
Question
Consider the linear congruence \(ax \equiv b(\bmod p)\) where \(a,{\text{ }}b \in {\mathbb{Z}^ + },{\text{ }}p\) is a prime and \(\gcd (a,{\text{ }}p) = 1\). Using Fermat’s little theorem, show that \(x \equiv {a^{p - 2}}b(\bmod p)\).
Hence find the smallest value of \(x\) greater than 100 satisfying the linear congruence \(3x \equiv 13(\bmod 19)\).
Markscheme
multiplying both sides by \({a^{p - 2}}\), M1
\({a^{p - 1}}x \equiv {a^{p - 2}}b(\bmod p)\) A1
using \({a^{p - 1}} \equiv 1(\bmod p)\) R1
therefore, \(x \equiv {a^{p - 2}}b(\bmod p)\) AG
[3 marks]
using the above result,
\(x \equiv {3^{17}} \times 13(\bmod 19){\text{ }}\left( { \equiv 16\,7882\,2119(\bmod 19)} \right)\) A1
\( \equiv 17(\bmod 19)\) (M1)A1
\(x = 112\) A1
[4 marks]