Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ0.2 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Hence and Find | Question number | 2 | Adapted from | N/A |
Question
Consider the linear congruence ax≡b(mod where a,{\text{ }}b \in {\mathbb{Z}^ + },{\text{ }}p is a prime and \gcd (a,{\text{ }}p) = 1. Using Fermat’s little theorem, show that x \equiv {a^{p - 2}}b(\bmod p).
Hence find the smallest value of x greater than 100 satisfying the linear congruence 3x \equiv 13(\bmod 19).
Markscheme
multiplying both sides by {a^{p - 2}}, M1
{a^{p - 1}}x \equiv {a^{p - 2}}b(\bmod p) A1
using {a^{p - 1}} \equiv 1(\bmod p) R1
therefore, x \equiv {a^{p - 2}}b(\bmod p) AG
[3 marks]
using the above result,
x \equiv {3^{17}} \times 13(\bmod 19){\text{ }}\left( { \equiv 16\,7882\,2119(\bmod 19)} \right) A1
\equiv 17(\bmod 19) (M1)A1
x = 112 A1
[4 marks]