User interface language: English | Español

Date May 2008 Marks available 8 Reference code 08M.2.hl.TZ0.1
Level HL only Paper 2 Time zone TZ0
Command term Hence and Solve Question number 1 Adapted from N/A

Question

The graph \(G\) has the following cost adjacency matrix.

Draw \(G\) in planar form.

[2]
A.a.

Given that \(ax \equiv b(\bmod p)\) where \(a,b,p,x \in {\mathbb{Z}^ + }\) , \(p\) is prime and \(a\) is not a multiple of \(p\), use Fermat’s little theorem to show that

\(x \equiv {a^{p - 2}}b(\bmod p)\) .

[3]
B.a.

Hence solve the simultaneous linear congruences\[3x \equiv 4(\bmod 5)\]\[5x \equiv 6(\bmod 7)\]giving your answer in the form \(x \equiv c(\bmod d)\) .

[8]
B.b.

Markscheme

                                                                                    A2

[2 marks]

Note: The weights are not required for this A2.

A.a.

Multiply through by \({a^{p - 2}}\) .

\({a^{p - 1}}x \equiv {a^{p - 2}}b(\bmod p)\)     M1A1

Since, by Fermat’s little theorem, \({a^{p - 1}} \equiv 1(\bmod p)\) ,     R1

\(x \equiv {a^{p - 2}}b(\bmod p)\)     AG

[3 marks]

B.a.

Using the result from (a),

\(x \equiv {3^3} \times 4(\bmod 5) \equiv 3(\bmod 5)\)     M1A1

\( = 3\), \(8\), \(13\), \(18\), \(23\),…     (A1)

and \(x \equiv {5^5} \times 6(\bmod 7) \equiv 4(\bmod 7)\)     M1A1

\( = 4\), \(11\), \(18\), \(25\),…     (A1)

The general solution is

\(x = 18 + 35n\)     M1

i.e. \(x \equiv 18(\bmod 35)\)     A1

[8 marks]

B.b.

Examiners report

[N/A]
A.a.
[N/A]
B.a.
[N/A]
B.b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.4 » Solution of simultaneous linear congruences (Chinese remainder theorem).

View options