User interface language: English | Español

Date May 2015 Marks available 2 Reference code 15M.1.sl.TZ2.9
Level SL only Paper 1 Time zone TZ2
Command term State Question number 9 Adapted from N/A

Question

Only one of the following four sequences is arithmetic and only one of them is geometric.

     \({a_n} = 1,{\text{ }}2,{\text{ }}3,{\text{ }}5,{\text{ }} \ldots \)

     \({b_n} = 1,{\text{ }}\frac{3}{2},{\text{ }}\frac{9}{4},{\text{ }}\frac{{27}}{8},{\text{ }} \ldots \)

     \({c_n} = 1,{\text{ }}\frac{1}{2},{\text{ }}\frac{1}{3},{\text{ }}\frac{1}{4},{\text{ }} \ldots \)

     \({d_n} = 1,{\text{ }}0.95,{\text{ }}0.90,{\text{ }}0.85,{\text{ }} \ldots \)

State which sequence is

(i)     arithmetic;

(ii)     geometric.

[2]
a.

For another geometric sequence \({e_n} =  - 6,{\text{ }} - 3,{\text{ }} - \frac{3}{2},{\text{ }} - \frac{3}{4},{\text{ }} \ldots \)

write down the common ratio;

[1]
b(i).

For another geometric sequence \({e_n} =  - 6,{\text{ }} - 3,{\text{ }} - \frac{3}{2},{\text{ }} - \frac{3}{4},{\text{ }} \ldots \)

find the exact value of the tenth term. Give your answer as a fraction.

[3]
b(ii).

Markscheme

(i)     \({d_n}\;\;\;\;\;\)OR\(\;\;\;1,{\text{ }}0.95,{\text{ }}0.90,{\text{ }}0.85,{\text{ }} \ldots \)     (A1)     (C1)

(ii)     \({b_n}\;\;\;\)OR\(\;\;\;1,{\text{ }}\frac{3}{2},{\text{ }}\frac{9}{4},{\text{ }}\frac{{27}}{8},{\text{ }} \ldots \)     (A1)     (C1)

a.

\(\frac{1}{2}\;\;\;\)OR\(\;\;\;0.5\)     (A1)     (C1)

Note: Accept ‘divide by 2’ for (A1).

b(i).

\( - 6{\left( {\frac{1}{2}} \right)^{10 - 1}}\)     (M1)(A1)(ft)

Notes: Award (M1) for substitution in the GP \({n^{{\text{th}}}}\) term formula, (A1)(ft) for their correct substitution.

Follow through from their common ratio in part (b)(i).

 

OR

\(\left( { - 6,{\text{ }} - 3,{\text{ }} - \frac{3}{2},{\text{ }} - \frac{3}{4},} \right) - \frac{3}{8},{\text{ }} - \frac{3}{{16}},{\text{ }} - \frac{3}{{32}},{\text{ }} - \frac{3}{{64}},{\text{ }} - \frac{3}{{128}}\)     (M1)(A1)(ft)

Notes: Award (M1) for terms 5 and 6 correct (using their ratio).

Award (A1)(ft) for terms 7, 8 and 9 correct (using their ratio).

 

\( - \frac{3}{{256}}\;\;\;\left( { - \frac{6}{{512}}} \right)\)     (A1)(ft)     (C3)

b(ii).

Examiners report

[N/A]
a.
[N/A]
b(i).
[N/A]
b(ii).

Syllabus sections

Topic 1 - Number and algebra » 1.7 » Arithmetic sequences and series, and their applications.
Show 84 related questions

View options