User interface language: English | Español

Date November 2020 Marks available 1 Reference code 20N.2.SL.TZ0.S_7
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Show that Question number S_7 Adapted from N/A

Question

The following diagram shows a circle with centre O and radius 1cm. Points A and B lie on the circumference of the circle and AO^B=2θ, where 0<θ<π2.

The tangents to the circle at A and B intersect at point C.

 

Show that AC=tanθ.

[1]
a.

Find the value of θ when the area of the shaded region is equal to the area of sector OADB.

[6]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct working for AC (seen anywhere)     A1

eg       tanθ=ACOA, tanθ=AC1

AC=tanθ      AG   N0

[1 mark]

a.

METHOD 1 (working with half the areas)

area of triangle OAC or triangle OBC      (A1)

eg      12×1×tanθ

correct sector area      (A1)

eg      12×θ×12 , 12θ

correct approach using their areas to find the shaded area (seen anywhere)      (A1)

eg      Atheir triangle-Atheir sector , 12θ-12tanθ

correct equation      A1

eg      12tanθ-12θ=12θ , tanθ=2θ

1.16556

1.17      A2   N4

 

METHOD 2 (working with entire kite and entire sector)

area of kite OACB      (A1)

eg      2×12×1×tanθ , 12×1cosθ×2sinθ

correct sector area      (A1)

eg      12×2θ×12 , θ

correct approach using their areas to find the shaded area (seen anywhere)      (A1)

eg      Akite OACB-Asector OADB , θ-tanθ

correct equation      A1

eg      tanθ-θ=θ , tanθ=2θ

1.16556

1.17      A2   N4

 

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.7—Radians
Show 28 related questions
Topic 3—Geometry and trigonometry

View options