Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.1.AHL.TZ1.H_3
Level Additional Higher Level Paper Paper 1 Time zone Time zone 1
Command term Solve Question number H_3 Adapted from N/A

Question

Solve the equation sec2x+2tanx=0, 0x2π.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

use of sec2x=tan2x+1     M1

tan2x+2tanx+1=0

(tanx+1)2=0     (M1)

tanx=1     A1

x=3π4, 7π4     A1A1

METHOD 2

1cos2x+2sinxcosx=0     M1

1+2sinxcosx=0

sin2x=1     M1A1

2x=3π2, 7π2

x=3π4, 7π4     A1A1

 

Note:     Award A1A0 if extra solutions given or if solutions given in degrees (or both).

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.8—Unit circle, Pythag identity, solving trig equations graphically
Topic 3—Geometry and trigonometry

View options