Processing math: 100%

User interface language: English | Español

Date May 2022 Marks available 2 Reference code 22M.1.AHL.TZ2.6
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Show that Question number 6 Adapted from N/A

Question

A function f is defined by f(x)=x1-x2 where -1x1.

The graph of y=f(x) is shown below.

Show that f is an odd function.

[2]
a.

The range of f is ayb, where a, b.

Find the value of a and the value of b.

[6]
b.

Markscheme

attempts to replace x with -x        M1

f(-x)=-x1-(-x)2

=-x1-(-x)2(=-f(x))         A1

 

Note: Award M1A1 for an attempt to calculate both f(-x) and -f(-x) independently, showing that they are equal.
Note: Award M1A0 for a graphical approach including evidence that either the graph is invariant after rotation by 180° about the origin or the graph is invariant after a reflection in the y-axis and then in the x-axis (or vice versa).

 

so f is an odd function         AG

  

[2 marks]

a.

attempts both product rule and chain rule differentiation to find f'(x)        M1

f'(x)=x×12×(-2x)×(1-x2)-12+(1-x2)12×1 (=1-x2-x21-x2)         A1

=1-2x21-x2

sets their f'(x)=0        M1

x=±12         A1

attempts to find at least one of f(±12)         (M1)

 

Note: Award M1 for an attempt to evaluate f(x) at least at one of their f'(x)=0  roots.

 

a=-12  and b=12         A1

 

Note: Award A1 for -12y12.

  

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2—Functions » AHL 2.14—Odd and even functions, self-inverse, inverse and domain restriction
Show 22 related questions
Topic 2—Functions

View options