User interface language: English | Español

Date May Specimen paper Marks available 3 Reference code SPM.1.AHL.TZ0.9
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number 9 Adapted from N/A

Question

The function f is defined by  f ( x ) = e 2 x 6 e x + 5 , x R , x a . The graph of  y = f ( x ) is shown in the following diagram.

Find the largest value of a such that f has an inverse function.

[3]
a.

For this value of a , find an expression for  f 1 ( x ) , stating its domain.

[5]
b.

Markscheme

attempt to differentiate and set equal to zero       M1

f ( x ) = 2 e 2 x 6 e x = 2 e x ( e x 3 ) = 0        A1

minimum at  x = ln 3

a = ln 3        A1

[3 marks]

a.

Note: Interchanging x and y can be done at any stage.

y = ( e x 3 ) 2 4      (M1)

e x 3 = ± y + 4      A1

as  x ln 3 x = ln ( 3 y + 4 )        R1

so  f 1 ( x ) = ln ( 3 x + 4 )     A1

domain of  f 1 is  x R 4 x < 5     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2—Functions » AHL 2.14—Odd and even functions, self-inverse, inverse and domain restriction
Show 22 related questions
Topic 2—Functions

View options