Date | May 2018 | Marks available | 3 | Reference code | 18M.1.AHL.TZ1.H_9 |
Level | Additional Higher Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 1 |
Command term | Find | Question number | H_9 | Adapted from | N/A |
Question
Let .
The graph of has a local maximum at A. Find the coordinates of A.
Show that there is exactly one point of inflexion, B, on the graph of .
The coordinates of B can be expressed in the form B where a, b. Find the value of a and the value of b.
Sketch the graph of showing clearly the position of the points A and B.
Markscheme
attempt to differentiate (M1)
A1
Note: Award M1 for using quotient or product rule award A1 if correct derivative seen even in unsimplified form, for example .
M1
A1
A1
[5 marks]
M1
A1
Note: Award A1 for correct derivative seen even if not simplified.
A1
hence (at most) one point of inflexion R1
Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.
changes sign at R1
so exactly one point of inflexion
[5 marks]
A1
(M1)A1
Note: Award M1 for the substitution of their value for into .
[3 marks]
A1A1A1A1
A1 for shape for x < 0
A1 for shape for x > 0
A1 for maximum at A
A1 for POI at B.
Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.
[4 marks]