User interface language: English | Español

Date November 2021 Marks available 2 Reference code 21N.2.SL.TZ0.6
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 6 Adapted from N/A

Question

The sum of the first n terms of a geometric sequence is given by Sn=Σr=1n2378r.

Find the first term of the sequence, u1.

[2]
a.

Find S.

[3]
b.

Find the least value of n such that S-Sn<0.001.

[4]
c.

Markscheme

u1=S1=23×78                 (M1)

=1424=712=0.583333                 A1


[2 marks]

a.

r=78=0.875                 (A1)

substituting their values for u1 and r into S=u11-r                 (M1)

=143=4.66666                 A1


[3 marks]

b.

attempt to substitute their values into the inequality or formula for Sn                 (M1)

143-Σr=1n2378r<0.001  OR  Sn=7121-78n1-78

attempt to solve their inequality using a table, graph or logarithms

(must be exponential)                 (M1)


Note: Award (M0) if the candidate attempts to solve S-un<0.001.


correct critical value or at least one correct crossover value                 (A1)

63.2675  OR  S-S63=0.001036  OR  S-S64=0.000906

OR  S-S63-0.001=0.0000363683  OR  S-S64-0.001=0.0000931777

least value is n=64                 A1

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » SL 1.3—Geometric sequences and series
Show 68 related questions
Topic 1—Number and algebra » SL 1.8—Sum of infinite geo sequence
Topic 1—Number and algebra

View options