User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.2.SL.TZ2.7
Level Standard Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number 7 Adapted from N/A

Question

The six blades of a windmill rotate around a centre point C. Points A and B and the base of the windmill are on level ground, as shown in the following diagram.

From point A the angle of elevation of point C is 0.6 radians.

An observer walks 7 metres from point A to point B.

The observer keeps walking until he is standing directly under point C. The observer has a height of 1.8 metres, and as the blades of the windmill rotate, the end of each blade passes 2.5 metres over his head.

One of the blades is painted a different colour than the others. The end of this blade is labelled point D. The height h, in metres, of point D above the ground can be modelled by the function ht=pcos3π10t+q, where t is in seconds and p, q. When t=0, point D is at its maximum height.

Given that point A is 12 metres from the base of the windmill, find the height of point C above the ground.

[2]
a.

Find the angle of elevation of point C from point B.

[2]
b.

Find the length of each blade of the windmill.

[2]
c.

Find the value of p and the value of q.

[4]
d.

If the observer stands directly under point C for one minute, point D will pass over his head n times.

Find the value of n.

[3]
e.

Markscheme

tan0.6=h12                     (M1)

8.20964

8.21m                  A1

 

[2 marks]

a.

tanB=8.20965  OR  tan-11.6419                     (A1)

1.02375

1.02  (radians) (accept 58.7°)                  A1

 

[2 marks]

b.

x+1.8+2.5=8.20964  (or equivalent)                     (A1)

3.90964

3.91  (m)                  A1

 

[2 marks]

c.

METHOD 1

recognition that blade length = amplitude, p=max-min2                     (M1)

p=3.91                  A1

centre of windmill = vertical shift, q=max+min2                     (M1)

q=8.21                  A1

 

METHOD 2

attempting to form two equations in terms of  p and q                     (M1)(M1)

12.1192=pcos3π10·0+q,  4.3000=pcos3π10·103+q

p=3.91                  A1

q=8.21                  A1

  

[4 marks]

d.

appropriate working towards finding the period                     (M1)

period=2π3π10=6.6666

rotations per minute =60their period                     (M1)

n=9 (must be an integer) (accept n=10, n=18, n=19)                  A1

  

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.3—Applications: angles of elevation and depression, bearings
Show 26 related questions
Topic 3— Geometry and trigonometry

View options