Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.2.AHL.TZ0.H_9
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number H_9 Adapted from N/A

Question

A body moves in a straight line such that its velocity, vms1, after t seconds is given by v=2sin(t10+π5)csc(t30+π4) for 0t60.

The following diagram shows the graph of v against t. Point A is a local maximum and point B is a local minimum.

The body first comes to rest at time t=t1. Find

Determine the coordinates of point A and the coordinates of point B.

[4]
a.i.

Hence, write down the maximum speed of the body.

[1]
a.ii.

the value of t1.

[2]
b.i.

the distance travelled between t=0 and t=t1.

[2]
b.ii.

the acceleration when t=t1.

[2]
b.iii.

Find the distance travelled in the first 30 seconds.

[3]
c.

Markscheme

A(7.472.28)  and  B(43.4,2.45)       A1A1A1A1

[4 marks]

a.i.

maximum speed is 2.45(ms1)       A1

[1 mark]

a.ii.

v=0t1=25.1(s)      (M1)A1

[2 marks]

b.i.

t10vdt      (M1)

=41.0(m)       A1

[2 marks]

b.ii.

a=dvdt  at  t=t1=25.1     (M1)

a=0.200(ms2)       A1

Note: Accept a=0.2.

[2 marks]

b.iii.

attempt to integrate between 0 and 30       (M1)

Note: An unsupported answer of 38.6 can imply integrating from 0 to 30.

 

EITHER

300|v|dt       (A1)

 

OR

41.030t1vdt       (A1)

 

THEN

=43.3(m)       A1

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.

Syllabus sections

Topic 5 —Calculus » SL 5.9—Kinematics problems
Show 91 related questions
Topic 5 —Calculus

View options