User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.2.AHL.TZ0.H_9
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number H_9 Adapted from N/A

Question

A body moves in a straight line such that its velocity,  v m s 1 , after t  seconds is given by v = 2 sin ( t 10 + π 5 ) csc ( t 30 + π 4 ) for  0 t 60 .

The following diagram shows the graph of v against t . Point A is a local maximum and point B is a local minimum.

The body first comes to rest at time t = t 1 . Find

Determine the coordinates of point A and the coordinates of point B .

[4]
a.i.

Hence, write down the maximum speed of the body.

[1]
a.ii.

the value of  t 1 .

[2]
b.i.

the distance travelled between  t = 0 and  t = t 1 .

[2]
b.ii.

the acceleration when t = t 1 .

[2]
b.iii.

Find the distance travelled in the first 30 seconds.

[3]
c.

Markscheme

A ( 7.47 2.28 )   and  B ( 43.4 , 2.45 )        A1A1A1A1

[4 marks]

a.i.

maximum speed is  2.45 ( m s 1 )        A1

[1 mark]

a.ii.

v = 0 t 1 = 25.1 ( s )       (M1)A1

[2 marks]

b.i.

0 t 1 v d t       (M1)

= 41.0 ( m )        A1

[2 marks]

b.ii.

a = d v d t   at  t = t 1 = 25.1      (M1)

a = 0.200 ( m s 2 )        A1

Note: Accept  a = 0.2 .

[2 marks]

b.iii.

attempt to integrate between 0 and 30       (M1)

Note: An unsupported answer of 38.6 can imply integrating from 0 to 30.

 

EITHER

0 30 | v | d t        (A1)

 

OR

41.0 t 1 30 v d t        (A1)

 

THEN

= 43.3 ( m )        A1

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.

Syllabus sections

Topic 5 —Calculus » SL 5.9—Kinematics problems
Show 91 related questions
Topic 5 —Calculus

View options