Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.1.AHL.TZ0.H_10
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Show and Sketch Question number H_10 Adapted from N/A

Question

Consider f(x)=2x4x211<x<1.

For the graph of y=f(x),

Find f(x).

[2]
a.i.

Show that, if f(x)=0, then x=23.

[3]
a.ii.

find the coordinates of the y-intercept.

[1]
b.i.

show that there are no x-intercepts.

[2]
b.ii.

sketch the graph, showing clearly any asymptotic behaviour.

[2]
b.iii.

Show that 3x+11x1=2x4x21.

[2]
c.

The area enclosed by the graph of y=f(x) and the line y=4 can be expressed as lnv. Find the value of v.

[7]
d.

Markscheme

attempt to use quotient rule (or equivalent)       (M1)

f(x)=(x21)(2)(2x4)(2x)(x21)2       A1

=2x2+8x2(x21)2

[2 marks]

a.i.

f(x)=0

simplifying numerator (may be seen in part (i))       (M1)

x24x+1=0 or equivalent quadratic equation       A1

 

EITHER

use of quadratic formula

x=4±122       A1

 

OR

use of completing the square

(x2)2=3       A1

 

THEN

x=23  (since 2+3 is outside the domain)       AG

 

Note: Do not condone verification that x=23f(x)=0.

Do not award the final A1 as follow through from part (i).

 

[3 marks]

a.ii.

(0, 4)       A1

[1 mark]

b.i.

2x4=0x=2      A1

outside the domain       R1

[2 marks]

b.ii.

      A1A1

award A1 for concave up curve over correct domain with one minimum point in the first quadrant
award A1 for approaching x=±1 asymptotically

[2 marks]

b.iii.

valid attempt to combine fractions (using common denominator)      M1

3(x1)(x+1)(x+1)(x1)      A1

=3x3x1x21

=2x4x21      AG

[2 marks]

c.

f(x)=42x4=4x24      M1

       (x=0  or)  x=12      A1

 

area under the curve is 120f(x)dx      M1

=1203x+11x1dx

Note: Ignore absence of, or incorrect limits up to this point.

 

=[3ln|x+1|ln|x1|]120      A1

=3ln32ln12(0)

=ln274      A1

area is 2120f(x)dx  or  1204dx120f(x)dx      M1

=2ln274

=ln4e227      A1

(v=4e227)

 

[7 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 2—Functions » AHL 2.13—Rational functions
Show 40 related questions
Topic 2—Functions

View options