User interface language: English | Español

Date May Example questions Marks available 3 Reference code EXM.1.AHL.TZ0.4
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number 4 Adapted from N/A

Question

Let  f ( x ) = 2 x + 6 x 2 + 6 x + 10 , x R .

Show that f ( x ) has no vertical asymptotes.

[3]
a.

Find the equation of the horizontal asymptote. 

[2]
b.

Find the exact value of  0 1 f ( x ) d x , giving the answer in the form  ln q , q Q .

[3]
c.

Markscheme

x 2 + 6 x + 10 = x 2 + 6 x + 9 + 1 = ( x + 3 ) 2 + 1       M1A1

So the denominator is never zero and thus there are no vertical asymptotes. (or use of discriminant is negative)       R1

[3 marks]

a.

x ± , f ( x ) 0  so the equation of the horizontal asymptote is y = 0    M1A1

[2 marks]

b.

0 1 2 x + 6 x 2 + 6 x + 10 d x = [ ln ( x 2 + 6 x + 10 ) ] 0 1 = ln 17 ln 10 = ln 17 10       M1A1A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2—Functions » AHL 2.13—Rational functions
Show 40 related questions
Topic 2—Functions

View options