Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

User interface language: English | Español

Date May Specimen paper Marks available 5 Reference code SPM.2.AHL.TZ0.9
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 9 Adapted from N/A

Question

Consider the graphs of y=x2x3 and y=m(x+3)mR.

Find the set of values for m such that the two graphs have no intersection points.

Markscheme

METHOD 1

sketching the graph of y=x2x3 (y=x+3+9x3)      M1

the (oblique) asymptote has a gradient equal to 1 

and so the maximum value of m is 1      R1

consideration of a straight line steeper than the horizontal line joining (−3, 0) and (0, 0)      M1

so m > 0      R1

hence 0 < m ≤ 1      A1

 

METHOD 2

attempting to eliminate y to form a quadratic equation in x       M1 

x2=m(x29)

(m1)x29m=0      A1

 

EITHER

attempting to solve 4(m1)(9m)<0 for m       M1 

 

OR

attempting to solve x2 < 0 ie 9mm1<0(m1) for m       M1

 

THEN

0<m<1      A1

a valid reason to explain why m=1 gives no solutions eg if m=1,

(m1)x29m=09=0 and so 0 < m ≤ 1      R1

 

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » AHL 2.13—Rational functions
Show 40 related questions
Topic 2—Functions

View options