Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

User interface language: English | Español

Date May 2019 Marks available 1 Reference code 19M.3.AHL.TZ0.Hca_1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Show that Question number Hca_1 Adapted from N/A

Question

A simple model to predict the population of the world is set up as follows. At time t years the population of the world is x, which can be assumed to be a continuous variable. The rate of increase of x due to births is 0.056x and the rate of decrease of x due to deaths is 0.035x.

Show that dxdt=0.021x.

[1]
a.

Find a prediction for the number of years it will take for the population of the world to double.

[6]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

dxdt=0.056x0.035x       A1

dxdt=0.021x      AG

[1 mark]

a.

METHOD 1

dxdt=0.021x

attempt to separate variables       M1

1xdx=0.021dt      A1

lnx=0.021t(+c)      A1

EITHER

x=Ae0.021t

2A=Ae0.021t      A1

Note: This A1 is independent of the following marks.

OR

t=0,x=x0c=lnx0

ln2x0=0.021t+lnx0      A1

Note: This A1 is independent of the following marks.

THEN

ln2=0.021t       (M1)

t=33 years      A1

Note: If a candidate writes t=33.007, so t=34 then award the final A1.

 

METHOD 2

dxdt=0.021x

attempt to separate variables      M1

2AA1xdx=t00.021du      A1A1

Note: Award A1 for correct integrals and A1 for correct limits seen anywhere. Do not penalize use of t in place of u.

[lnx]2AA=[0.021u]t0      A1

ln2=0.021t       (M1)

t=33      A1

 

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.18—1st order DE’s – Euler method, variables separable, integrating factor, homogeneous DE using sub y=vx
Show 68 related questions
Topic 5 —Calculus

View options