User interface language: English | Español

Date November 2017 Marks available 6 Reference code 17N.3.AHL.TZ0.Hca_2
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Solve Question number Hca_2 Adapted from N/A

Question

Consider the differential equation d y d x + x x 2 + 1 y = x where y = 1 when x = 0 .

Show that x 2 + 1 is an integrating factor for this differential equation.

[4]
a.

Solve the differential equation giving your answer in the form y = f ( x ) .

[6]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

integrating factor = e x x 2 + 1 d x     (M1)

x x 2 + 1 d x = 1 2 ln ( x 2 + 1 )     (M1)

 

Note:     Award M1 for use of u = x 2 + 1 for example or f ( x ) f ( x ) d x = ln f ( x ) .

 

integrating factor = e 1 2 ln ( x 2 + 1 )     A1

= e ln ( x 2 + 1 )     A1

 

Note:     Award A1 for e ln u where u = x 2 + 1 .

 

= x 2 + 1     AG

 

METHOD 2

d d x ( y x 2 + 1 ) = d y d x x 2 + 1 + x x 2 + 1 y     M1A1

x 2 + 1 ( d y d x + x x 2 + 1 y )     M1A1

 

Note:     Award M1 for attempting to express in the form x 2 + 1 × (LHS of de) .

 

so x 2 + 1 is an integrating factor for this differential equation     AG

[4 marks]

a.

x 2 + 1 d y d x + x x 2 + 1 y = x x 2 + 1 (or equivalent)     (M1)

d d x ( y x 2 + 1 ) = x x 2 + 1

y x 2 + 1 = x x 2 + 1 d x   ( y = 1 x 2 + 1 x x 2 + 1 d x )     A1

= 1 3 ( x 2 + 1 ) 3 2 + C     (M1)A1

 

Note:     Award M1 for using an appropriate substitution.

 

Note:     Condone the absence of C .

 

substituting x = 0 ,   y = 1 C = 2 3     M1

 

Note:     Award M1 for attempting to find their value of C .

 

y = 1 3 ( x 2 + 1 ) + 2 3 x 2 + 1   ( y = ( x 2 + 1 ) 3 2 + 2 3 x 2 + 1 )     A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.18—1st order DE’s – Euler method, variables separable, integrating factor, homogeneous DE using sub y=vx
Show 68 related questions
Topic 5 —Calculus

View options