User interface language: English | Español

Date November 2016 Marks available 5 Reference code 16N.3.AHL.TZ0.Hca_1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Show that Question number Hca_1 Adapted from N/A

Question

Consider the differential equation d y d x + ( 2 x 1 + x 2 ) y = x 2 , given that y = 2 when x = 0 .

Show that 1 + x 2  is an integrating factor for this differential equation.

[5]
a.

Hence solve this differential equation. Give the answer in the form y = f ( x ) .

[6]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

attempting to find an integrating factor     (M1)

2 x 1 + x 2 d x = ln ( 1 + x 2 )    (M1)A1

IF is e ln ( 1 + x 2 )      (M1)A1

= 1 + x 2    AG

METHOD 2

multiply by the integrating factor

( 1 + x 2 ) d y d x + 2 x y = x 2 ( 1 + x 2 )    M1A1

left hand side is equal to the derivative of  ( 1 + x 2 ) y

A3

[5 marks]

a.

( 1 + x 2 ) d y d x + 2 x y = ( 1 + x 2 ) x 2    (M1)

d d x [ ( 1 + x 2 ) y ] = x 2 + x 4

( 1 + x 2 ) y = ( x 2 + x 4 d x = )   x 3 3 + x 5 5 ( + c )    A1A1

y = 1 1 + x 2 ( x 3 3 + x 5 5 + c )

x = 0 ,   y = 2 c = 2    M1A1

y = 1 1 + x 2 ( x 3 3 + x 5 5 + 2 )    A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.18—1st order DE’s – Euler method, variables separable, integrating factor, homogeneous DE using sub y=vx
Show 68 related questions
Topic 5 —Calculus

View options