DP Mathematics HL Questionbank
Prime numbers; relatively prime numbers and the fundamental theorem of arithmetic.
Path: |
Description
[N/A]Directly related questions
- 18M.3dm.hl.TZ0.4b.ii: State the value of \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\) for even positive...
- 18M.3dm.hl.TZ0.4b.i: State the value of \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\) for odd positive integers \(k\).
- 18M.3dm.hl.TZ0.4a: Show that...
- 08N.3dm.hl.TZ0.3a: Write 57128 as a product of primes.
- 11M.3dm.hl.TZ0.5a: Explaining your method fully, determine whether or not 1189 is a prime number.
- 11M.3dm.hl.TZ0.5b: (i) State the fundamental theorem of arithmetic. (ii) The positive integers M and N have...
- 14M.3dm.hl.TZ0.2d: Consider the set \(P\) of numbers of the form \({n^2} - n + 41,{\text{ }}n \in \mathbb{N}\). (i)...
- 13N.3dm.hl.TZ0.5a: Show that \(30\) is a factor of \({n^5} - n\) for all \(n \in \mathbb{N}\).
- 15M.3dm.hl.TZ0.5a: State the Fundamental theorem of arithmetic for positive whole numbers greater than \(1\).
- 15M.3dm.hl.TZ0.5b: Use the Fundamental theorem of arithmetic, applied to \(5577\) and \(99\,099\), to calculate...