Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.3dm.hl.TZ0.4
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term State Question number 4 Adapted from N/A

Question

Show that gcd(4k+2,3k+1)=gcd(k1,2), where kZ+,k>1.

[4]
a.

State the value of gcd(4k+2,3k+1) for odd positive integers k.

[1]
b.i.

State the value of gcd(4k+2,3k+1) for even positive integers k.

[1]
b.ii.

Markscheme

METHOD 1

attempting to use the Euclidean algorithm       M1

4k+2=1(3k+1)+(k+1)      A1

3k+1=2(k+1)+(k1)      A1

K+1=(k1)+2      A1

=gcd(k1,2)     AG

 

 

METHOD 2

gcd(4k+2,3k+1)

=gcd(4k+2(3k+1),3k+1)     M1

=gcd(3k+1,k+1)(=gcd(k + 1,3k + 1))     A1

=gcd(3k+12(k+1),k+1)(=gcd(k1,k+1))     A1

=gcd(k+1(k1),k1)(=gcd(2,k1))     A1

=gcd(k1,2)     AG

[4 marks]

 

a.

(for k odd), gcd(4k+2,3k+1)=2     A1

[1 mark]

b.i.

(for k even), gcd(4k+2,3k+1)=1     A1

[1 mark]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.2 » a|bb=na for some nZ .

View options